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Abstract

The ubiquity of strange attractors in nature suggests that non-

linear modeling techniques can improve performance in some signal

processing applications. We introduce Mixed State Markov Models

(MSMMs), a refinement of Hidden Filter HMMs, and apply both to a

synthetic Double Scroll time series. Forecasts by HFHMMs diverge af-

ter a few steps. Using ad hoc procedures, forecasts by MSMMs, even

models generated by crude methods without iterative optimization,

can be made more stable.

1 Introduction

Low dimensional deterministic dynamics can produce complex behavior; the

current interest in chaos is a result of the recent broad appreciation of this

fact. Many phenomena characterized by aperiodic time series that were pre-

viously explained in terms of high dimensional state spaces or random noise

sources are now known to be governed by low dimensional deterministic non-

linear dynamics, i.e. they are chaotic. It is thus plausible that some of

the time series that are analyzed using digital signal processing technology
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may be chaotic. For this paper we applied two modeling methods to scalar

time series synthesized by numerically integrating Chua’s Double Scroll sys-

tem [1]. Our purpose is to use the Double Scroll to illuminate properties of

models and algorithms for building them rather than using the algorithms

to investigate properties of the Double Scroll.

We are particularly interested in the performance of variants of the hidden

Markov models (HMM) used in speech research when they are applied to

chaotic time series. Previous work demonstrates that the methods perform

well in forecasting[2] and detection[3] applications.

2 Modeling

For our present purposes, a model is a mechanism for estimating probabilities

of sequences of observations. Introducing the notation yt+τ
t ≡ (y(t), y(t+ 1), . . . , y(t+ τ)),

a model is the set of density functions1
{

PyT1
: T ∈ Z+

}

. Each density func-

tion can be evaluated as

P (yT1 ) =
∫ T

∏

t=1

P
(

y(t)|yt−1
−∞

)

P
(

y0
−∞

)

dy0
−∞.

Thus, assuming stationarity, the entire model is defined by the pair of func-

tions Py(t)|yt−1
−∞

and Py0
−∞

. Given a sequence of observations, one fits a model

by selecting such functions, balancing the complexity of the functions against

the likelihood of the data given the functions. In this preliminary work, since

1When we wish to consider a probability as a function we will use subscript notation, for
example Py(1)|s(1). Otherwise we will generally use argument notation. In the expression
Pθ(y(t) | s(t) = si,x(t)) the arguments of Pθ are events, i.e., they should be interpreted as
predicates with a true or false value. When the numerical value of a parameter is not of
interest, predicate notation can be dropped without ambiguity. Thus the argument y(t)
in the example means “the value of y(t) is what it is”, i.e., “the output at time t has the
value y(t)”, the argument s(t) = si means “at time t, the process is in state si”, and so
on. The subscript θ indicates the model with respect to which the probability is taken.
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we disregard the complexity, we are making maximum likelihood estimates of

the functions. To proceed, one must assume that the influence of the history

can be summarized by some simple function φ,

P
(

y(t)|yt−1
−∞

)

= P
(

y(t)|φ
(

yt−1
−∞

))

.

For example, an nth order linear autoregressive (AR) model can be defined

by

φ
(

yt−1
−∞

)

= a0 +
n
∑

i=1

aiy(t− i)

P (y(t)|φ) =
1√
2πσ2

e
(y(t)−φ)2

2σ2 .

When one fits such a model to deterministic time series such as data gener-

ated by the Double Scroll, the variance σ2 is model error, not noise.

By assuming that a distribution in state space summarizes the influence

of the past, i.e., φ
(

yt−1
−∞

)

yields the parameters of a distribution, one can

obtain models that are not Markov of any order but nevertheless have only a

few internal degrees of freedom. The general approach is to assume that the

ys are functions of a Markov process and are characterized by the conditional

densities P
z(t+1)|z(t) and Py(t)|z(t) with

P
(

z(t+ 1)|zt
−∞, y

t
−∞

)

= P (z(t+ 1)|z(t)) (1)

P
(

y(t)|zt
−∞, y

∞
−∞

)

= P (y(t)|z(t)) .

Given these conditional density functions and a natural measure or station-

ary density µ with µ(z′) =
∫

P (z(t+ 1) = z′|z(t) = z̃)µ(z̃)dz̃, the model is
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defined by the recursion

P (y(t+ 1)| yt1) =
∫

P (y(t+ 1)|z(t+ 1)) P
(

z(t+ 1)|yt1
)

dz(t+ 1)

P
(

z(t+ 1)|yt1
)

=
∫

P (z(t+ 1)|z(t)) P
(

z(t)|yt1
)

dz(t)

P
(

z(t)|yt1
)

=
P (y(t)|z(t)) P

(

z(t)|yt−1
1

)

P
(

y(t)|yt−1
1

)

starting with P (z(1)) = µ. The key idea is that in state space there is an

evolving cloud of locations that are consistent with observations up to the

time t, i.e., P (z(t)|yt1). If the state variables z and the observations y are

drawn from discrete finite sets, the process is what is called a hidden Markov

model (HMM). Much HMM development work is motivated by applications

in natural language. The original work was done in the Communications

Research Division of the Institute for Defense Analysis in Princeton2 and

the methods were reviewed at a symposium in 1980. In the proceedings

Ferguson[6] described HMMs:

. . . a Markov chain with state space S, having S states . . . , a fi-

nite output alphabet, K, which we may take to be the integers

1, 2, . . . , K, and a collection of probability distributions. Explic-

itly, we need a transition matrix (aij), i, j ∈ S, where

aij = Prob{next state = j given current state = i}

and we need an output probability matrix (bj(k)), j ∈ S, k ∈ K,
where

bj(k) = Prob{observation = k given current state = j}
2Of the early references, we find [4] most helpful. The more recent overview by Poritz[5]

outlines much of the history of HMMs and includes a thorough bibliography.
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For completeness, we need an initial distribution on states, to get

us started. Let (a(i)), i ∈ S be this distribution.

Even if the dynamics and observations are nonlinear, a discrete HMM can

approximate the continuous case arbitrarily well by using large numbers of

states S and possible output values K. Unfortunately, ever larger quantities

of training data are required as S and K are increased. Observing that

discretization disregards useful properties of the data, we attempt to reduce

the amount of training data required by preserving a measure of nearness;

parameters for situations that do not occur in the training data can be fit

on the basis of interpolations of nearby situations that do. To build HMM–

like models that interpolate in this sense, we introduce the notion of a mixed

state ψ(t) = (s(t),x(t)) which consists of a discrete part s ∈ {1, 2, . . . , nstates}
and a continuous part x ∈ Rn. In Poritz’s[5] Hidden Filter Hidden Markov

Models (HFHMMs) the expected output is a function of the history vector

as well as the state. Given a state s(t) = s and history vector

x(t) ≡ (y(t− 1), y(t− 2), . . . , y(t−D)) ,

the mean and variance of the predicted output ŷ(t) are given respectively by

a linear function fs(x(t)) and by a constant σs, both particular to the current

state s.

In a HFHMM, the output history yt1 does not affect the probability of

the transition s(t) → s(t + 1), i.e., P (s(t + 1)|s(t), yt1) = P (s(t + 1)|s(t)).
Thus the model prohibits the output history from informing the choice of

successor state, and the sequence of discrete states (s(t)) is a Markov chain.

In [2], we studied HFHMMs and introduced, but did not develop in detail, the

class of Mixed State Markov Models (MSMMs). These are a generalization

of HFHMMs that allow history-dependent state transition probabilities. In

such a process, the sequence of discrete states s(1), . . . does not in general

form a Markov chain. However, the sequence of mixed states does. The
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distribution of the output y(t) is assumed to be completely determined by

the mixed state ψ(t). This allows us to model a time series as the outputs

of a Markov process with uncountably many possible states. It can be seen

that HFHMMs are a special case of this class of model.

A mixed state Markov process is defined by the equations3

P (ψ(t+ 1) | yt−1
1 , ψt

1) = P (ψ(t+ 1) | ψ(t)) (2)

P (y(t) | yt−1
1 , ψt

1) = P (y(t) | ψ(t))

These guarantee that the sequence {ψ(t)} is first order Markov and that

the hidden state ψ(t) encapsulates all predictive information available in the

history yt−1
1 , ψt

1. For our mixed state Markov models, we make only the

additional assumption that the distribution P (y(t),x(t) | s(t) = si, s(t+1) =

sj) is multivariate normal with mean and covariance matrix specific to the

transition si → sj.

A Mixed State Markov Model can be represented by the following pa-

rameters:

• The number of discrete states nstates and the dimension D of the history

vector x. Once chosen, these stay fixed.

• For each transition si → sj, the parameters of the distributions:

P (x(t) | s(t+1) = sj, s(t) = si) (typical si → sj history vector),

P (y(t) | x(t), s(t+1) = sj, s(t) = si) (typical si → sj output), and

P (s(t+1) = sj | s(t) = si) (the overall probability of a transition).

The first is modeled as a multivariate normal, the second as a normally

distributed linear prediction, and the third is a constant. These are

computed from the data and should be iteratively optimized.

3Notice that equations 2 are formally identical to equations 1.
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• For each discrete state si, the probability P (s(1) = si), a constant. This

also is computed from the data.

These distributions are sufficient to calculate other probabilities of interest.

In particular, we have

P (s(t+1)=j | ψ(t) = (i,x(t))) =

=
P (x(t) | s(t+1)=j, s(t)=i)

P (x(t) | s(t)=i) P (s(t+1)=j | s(t)=i)

P (y(t) | ψ(t) = (s(t),x(t)))) =

=
∑

j

P (y(t) | s(t), s(t+1) = j,x(t)) P (s(t+1) = j | s(t),x(t))

3 Application to the Double Scroll

We used the routine odeint from Press et al.[7] to integrate the Double Scroll

system as described in Chua, Komuro and Matsumoto [1]:

ẏ1 = α(y2 − h(y1)),

ẏ2 = y1 − y2 + y3 ,

ẏ3 = −βy2 ,

where h(y) = m1y +
1
2
(m0 −m1)[|y + 1| − |y − 1|]. The parameters were set

to α = 9.0, β = 100/7, m0 = −1/7, and m1 = 2/7. Forty thousand values of

y1 were recorded at a sampling interval of τs = 0.2. In the remainder of this

paper we will refer to these data as

yT1 ≡ (y(1), y(2), . . . , y(T )) ,

changing the name of the measured variable and rescaling to a unit sampling

interval for simplicity. A segment of the data appears in fig. 1

7



We trained models of the HFHMM and MSMM types on this time series.

To partially compensate for the increased complexity of MSMMs, we used

HFHMMs with forty discrete states, and MSMMs with only twenty. Both

types had four-dimensional AR history vectors. For both types of model, we

construct an initial seed model based on a partition of the space of autore-

gressive history vectors that we generate by Lloyd iteration4. Specifying a

quantization vector vs and metric ds() for each cell s defines the partition.

An autoregressive history vector x is in the cell s which minimizes ds(vs,x).

In each cell, we set the metric proportional to the inverse covariance of the

data in the cell. To construct the seed HFHMM, we associate a hidden state

with each cell of the partition, initialize the parameters of Py(t)|s(t),x(t) with a

linear fit over training data that fall in the cell, and use relative frequencies

of transitions between cells to estimate discrete state transition probabilities.

A seed MSMM is similarly constructed.

The HFHMMs have the advantage of being optimizable iteratively using

Baum’s[4] forward backward algorithm. At present, we have only a partial

adaptation of the algorithm to MSMMs. This incomplete method, which is

not guaranteed to converge, worked well with the data of [2] but diverges

when applied to the Double Scroll data. Pending development of a complete

algorithm, we have used crude hill climbing methods to train models of this

type. Nevertheless seed MSMM models, which Lloyd iteration produces very

efficiently, outperform even trained HFHMMs.

We evaluated the performance of the models by computing forecasts of

the continuation of the time series yT1 past the time T , using a Monte Carlo

method. During forecasts of a MSMM, a path was discarded if during it

there arose a history vector that could not be assigned to any discrete state

with nonzero probability. This level of filtering of the simulation’s outputs is

not possible with HFHMMs, which only model the probability of an output

vector conditionally on earlier outputs. (See discussion below).

4For details on vector quantization, see Gersho and Gray’s recent text[8]
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Figure 2 shows the predictions of a forty-state HFHMM that was trained

for seventy iterations of the forward-backward algorithm, as described in [2].

The forecast diverges rapidly, becoming inaccurate in fewer than ten steps,

and the probability density of the prediction “leaks” away from the range of

the time series.

Figure 3 shows the predictions of a simulation using a twenty state “seed”

MSMM, that has not been iteratively optimized. It accurately predicts the

behavior of the time series for about 35 steps, then it mistakenly predicts a

transition to the upper half of the attractor and continues to predict values

within the attractor until the end of the simulation at time T + 100. The
divergence near the end is an artifact of the simulation algorithm, since

paths that are just beginning to “leak” at the end of the simulation are not

discovered and discarded.

We have developed a very crude hill-climbing method that can somewhat

improve seed MSMMs. Applying the method to the model that produced Fig.

3 yields forecasts that seem no different by eye from those of the seed model,

although there is somewhat less leakage and the medium-range estimates

are more accurate. We are currently investigating more efficient methods of

optimization.

As figure 2 demonstrates, when a HFHMM is fit to chaotic dynamics

probability will leak away to exponentially larger values of y as the number

of time steps is increased. Considering the Lyapunov exponents helps explain

this defect. A discrete state sequence sτ1 specifies a sequence of linear maps,

i.e., derivative information. For typical long sequences, the magnitudes of the

eigenvalues of the products of these maps will grow at exponential rates given

by the Lyapunov exponents. For chaotic systems, at least one Lyapunov

exponent is positive, and the composed maps are linearly, and hence globally,

unstable. The problem is that the model is affine (linear plus constant) in

the sense that for a given state sequence, there is a constant vector x̄ and a

constant sequence ȳτ1 such that for any sequence of observations yτ1 , history
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x, and λ ∈ R

Pθ(y
τ
1 | sτ1,x(1) = x) = P (λyτ1 + (1− λ)ȳτ1 | sτ1,x(1) = λx + (1− λ)x̄).

Thus a HFHMM fit to a chaotic process will be unstable.

A MSMM includes an output model that has exactly the same property:

given a transition s(t)→ s(t+1) (rather than a state, as for a HFHMM), the

output y(t) is modeled as an affine linear function of the output history. We

introduced these history dependent transition probabilities in an attempt to

make the probabilities of the divergent sequences small. We do not yet have

working programs that optimize such models, and the seed models do not

quench the divergence, but the model parameters permit the computation of

P (x(t)|s(t), s(t+1)), and we have used this information in an ad hoc fashion

to quench divergence; we simply delete all paths for which P (x(t)|s(t), s(t+
1)) is zero to machine precision. The surviving paths are necessarily close to

the training data.

Summary

MSMMs are a powerful way to model non-linear processes. For some applications[2]

a suboptimal version of the forward-backward algorithm gives good results.

For the Double Scroll data, it is inappropriate, and we have foregone opti-

mization altogether. The Double Scroll system has been useful for illuminat-

ing both the strengths and weaknesses of our techniques. We are working on

an optimal version of the forward backward algorithm for MSMMs, and we

hope it will produce models that forbid divergent behavior.
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Figure 1: A chaotic attractor. A phase portrait of the Double Scroll system
appears in (a), and in (b) this vector trajectory has been projected down to
a scalar time series.
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Figure 2: Probability forecast computed via Monte Carlo simulation using a
HFHMM with fourth-order autoregressive outputs and 40 hidden states. The
model was fit to a 40,000 point time series in 70 iterations of the forward-
backward algorithm starting with a seed model that was based on vector
quantization. In (a) the actual continuation data y40,020

40,001 appears as a smooth
horizontal curve, and at each time step t a forecast density Py(t) is superposed
on the time series plot. The density plots are discontinued over regions in
which the forecast density is zero. Probability beyond bins at ±4.4 are accu-
mulated and plotted in the end bins. At later times, as the forecast density
function spreads out, these end bins accumulate most of the probability. (b)
is a perspective plot of the same data.
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Figure 3: Probability forecast computed via Monte Carlo simulation using a
MSMM. This model is fourth-order autoregressive and has 20 discrete (hid-
den) states. It was estimated directly from vector quantization of the training
data. As in fig. 2, two representations of the forecast density functions appear
in (a) and (b).
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