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Abstract

We note similarities of the state space reconstruction (“Embedology”)
practiced in numerical work on chaos, state space methods of stochastic
systems theory, and the hidden Markov models (HMMs) used in speech
research. We review Baum’s EM algorithm in general and the specific
forward-backward algorithm that optimizes a class of HMM that has a
mixed state space consisting of continuous and discrete parts. We then
describe forecasts based on models fit to data set D.

1 Introduction

In the first part of this paper we hope to provide an intuitive explanation of
hidden Markov model (HMM) methods that builds on the notion of state space
reconstruction. Later, we provide enough details about the approach to enable a
careful reader to develop new variants and to write his own programs. We begin
with some thoughts on forecasting and state spaces. We were drawn to work on
varieties of hidden Markov models for scalar time series from chaotic dynamics,
by the similarity of the notion of reconstructed state space in the chaos literature
to the notion of hidden state in the HMM literature. The approach provides
forecasts that consist of probability densities instead of single guesses of future
values. In section 6, such a forecast of data set D suggests that the approach is
quite powerful.

The most direct method of forecasting is to search the past for times when
conditions matched the patterns of recent observations and then guess that what
happened before will happen again. While forecasts for discrete valued periodic
sequences like (0,1,2,3,0,1,2,3,0,1,...) are trivial, forecasting sequences like
data set D, (0.643,0.558,0.484,0.434,0.422, .. ), is difficult because there is no
segment in the recorded history that exactly matches recent observations. In
such circumstances one may proceed by guessing how close conditions at various
times in the past are to present conditions and then appropriately averaging near
matches to make forecasts; here closeness corresponds to distance in state space,
and conditional probability density functions for location in state space given
observations implement the guesses.

1 This is derived from the revised version that we submitted on April 17, 1993. The software
that we used to insert figures into that version is not on our current system. In September of
2001, I (Andy Fraser) edited the document to include the figures so that I could make whole
ps and pdf files for distribution.
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The notion of state space has also been essential in the efforts over the
past dozen years in which researchers have claimed that various experimental
time series arise from chaotic dynamics. Characteristically scalar time series are
converted to vector time series in a procedure called state space reconstruction.
The simplest procedure is the use of delay vectors. Using a notation in which
a sequence of scalar observations is denoted by yI = (y(1),y(2),...,y(T)), we
write delay vectors as x(t) = y!~. , and observe that xI 11 can be obtained
from y{. Having reconstructed a vector time series, investigators generally
argue that the dynamics are deterministic, i.e., 3 F : R™ — R™ such that x(¢ +
1) = F (x(t)) Vt, and then estimate invariants such as dimensions, entropies, or
Lyapunov exponents from experimental measurements.

While the practice of explaining scalar time series in terms of vector dynam-
ics and using observed time series segments to specify locations in state space
has a long history?, the more recent literature in chaos usually cites Packard
et al.[12] or Takens[18]. The idea is that an “original” state space variable z
evolves via a diffeomorphism® F of some low dimensional manifold Z and gives
rise to a scalar observable y € R

z(t + 1) = F (z(¥)) (1a)

and a reconstruction function ¢ : R¥ — R™ is used to map windows of obser-
vations yfju of size w to reconstructed vectors x(t) € X = R™. Combining
#,F~1, and g one can write ® : Z — X with

x(t) = @ (2(t)) = ¢ (9(F " (2(t))), g(F*(2(1))), - .., g(F ™ (2(t)))) -

Takens showed that if g and ¢ are differentiable and m is large enough, then it is
a generic property that ® is a diffeomorphism, and thus one expects coordinate
invariant properties of trajectories and limit sets in Z to be the same as the
properties of their images in X. Although Takens’ result is insensitive to the
details of ¢ and g, when experimenters implemented the procedure, they found
that their estimates of invariants varied with changes in ¢ and g.

This variability of invariants lead to a literature (recently called Embedology[16])
concerned with defining and finding good reconstructions8]. The variability is
usually explained by observing that the procedures used to estimate invariants
converge in the limit of infinite amounts of noise free data, but that experi-
menters work with short noisy data sets instead. While it may be true that
different applications lead to different optimal reconstructions, we suspect? that
practical embedology will best be developed as an aspect of modeling techniques
for optimizing likelihood or a variant such as MDL or AIC.

2Most control theory text books have a section titled Observability which addresses the
question of whether or not sequences of observations uniquely determine locations in state
space.

3 A one to one differentiable function with a one to one differentiable inverse.

4This was suggested to us by Henry Abarbanel[l] and is similar to the notion of Casdagli
et al.[4] that reconstruction and prediction are related.



For noisy or stochastic dynamics and observations, equation (1) is not appro-
priate. Instead, the ys are functions of a Markov process and are characterized
by the conditional densities® Pys1))z(t) and Pz with

P (2(t+1)|zl o,y o) = P (2(t41)]2(t)) (2a)
P (y()2% o0, y%%) = P (y(8)]2(2)) . (2b)
Given these conditional density functions and a natural measure or stationary

density p with p(2') = [ Pysp)ja(r) (2'|2) u(2)dz, forecasting formally reduces
to iterating a recursion

P(y(TH)ly{) = / P (y(T41)|2(T+)) P (2(TH)ly{) da(T+)  (3a)
P (z(T+)ly{) = /P(Z(T+1)IZ(T)) P (z(T)ly{) dz(T) (3b)
P (y(T)|2(T)) P (2(T)ly; )

P (y(T)lyi ")

starting with P(z(1)) = u. The key idea is that in state space there is an
evolving cloud of locations that are consistent with observations up to the time
t, i.e., P(z(t)|yt). If the conditional densities of equation (2) correspond to
adding Gaussian noise to equation (1), they can be written as

P (2(T)ly!) = (3¢)

x-! " —[2(t41) = F (2(t)] 5~ [=(441) = F (2(£))]
P(a(#41)]2(1)) = [' m'] e (4a)
1 [w(t) =G (=(2))]®
P(y(8)|=()) = e 7 (4b)

A /277013

where ¥ 7! is an inverse covariance matrix. Further, if the functions F and G
are linear, the recursion of equations (3) constitutes Kalman filtering®.
The simplicity of the equations (3) obscures the following difficulties:

e The conditional densities that specify a stochastic process may be complex
requiring descriptions with infinite numbers of parameters.

e The derived intermediate terms like P (z(t)|y?) are not simply values, but
functions.

e And most importantly, the conditional densities that specify a stochastic
process must be estimated on the basis of observations alone.

50ur notation blurs the distinction between probability distributions of discrete variables
and probability densities of continuous variables. For the probability at z, we use the notation
P(x), for the function, we use Py, i.e., we use subscripts to specify a function and parentheses
to denote the value of a function at a point. We resolve ambiguities such as P(5.23) by using
subscripts or =, e.g., Pz(5.23) or P(£=5.23). We attempt to balance opacity and imprecision
in our notation.

6S0renson[17] observes that the basic ideas go back to Gauss.



Rather than attempting to estimate the “true” stochastic process on the basis
of observations, in view of these difficulties, we reconsider our pragmatic goals.
For forecasting, we are interested only in the ys, the hidden zs are just compu-
tational intermediates. Consequently, we consider a model of the process to be
a sequence of probability density functions Py : R - R {t =1,2,3,...}. In
selecting model classes and fitting their parameters, our goal is to obtain a set
{Pyi : Vte Z+} or equivalently {Py(t+1)|y§ : Vie Z+} that performs well in

our application (forecasting) rather than discovering a “true” generating mech-
anism’. We are still exploring several model types and not having carefully
accounted for free parameters in our comparisons, we simply use maximum
likelihood methods.

2 Model Classes

In this section we begin by introducing basic discrete state discrete output
HMMs. Then we turn to mixed state models, of which the hidden filter hidden
Markov models HFHMMs?® described in sections 4 and 5 are a special case.
Equation (2) describes a process in which the observable is a probabilistic
function of an underlying Markov process. If the state variables z and the ob-
servations y are drawn from discrete finite sets, the process is what is called a
hidden Markov model (HMM). Much HMM development work is motivated by
applications in natural language. The original work was done in the Communi-
cations Research Division of the Institute for Defense Analysis in Princeton and

the methods were reviewed at an open symposium in 1980. In the proceedings
Ferguson[7] described HMMs:

...a Markov chain with state space S, having S states ..., a finite
output alphabet, K, which we may take to be the integers 1,2, ..., K,
and a collection of probability distributions, Explicitly, we need a
transition matrix (a;;), 4, € S, where

a;; = Prob{next state = j given current state =i}

and we need an output probability matrix (b;(k)), j € S,k € K,
where

b; (k) = Prob{observation = k given current state = j}

For completeness, we need an initial distribution on states, to get us
started. Let (a(?)),i € S be this distribution.

HMMs are useful because the probability distributions can be adjusted by the
Baum-Welch, or forward-backward, algorithm to maximize the likelihood of a

7Qur view of forecasting has been influenced by Williams’ book on data compression[19]
and indirectly by the work of Rissanen[15].

8We called these models autoregressive hidden Markov models (ARIIMMSs) until we found
that Poritz[13] had already described them and called them HFHMMs.



given set of training data. We describe the version of the algorithm needed for
HFHMMs in section 5.
The following points about discrete HMMs merit emphasis:

1. Although the hidden process is first order Markov, the output process may
not be Markov of any order.

2. Even if the dynamics and observations (the functions F' and G in equation
(4)) are nonlinear, a discrete HMM can approximate the continuous case
arbitrarily well by using large numbers of states S and possible output
values K.

3. Larger numbers of training data are required as S and K are increased.

As an illustration of point 1 consider the process described by

9 1 0 0 100
o o 1 o0 p_ |0 10
=190 0 9 1 “l100
1 0 0 0 00 1

which produces output strings with runs of about seven 1s interspersed with
occasional 2s and 3s. In the output stream, the 2s and 3s alternate no matter
how many 1s fall in between. Such behavior can not be captured by a simple
Markov process of any order.

A discrete HMM fit to continuous observations of continuous dynamics (e.g.
equation (4)) disregards useful properties of the data. The large number of
training data in point 3 above can be reduced by preserving a measure of near-
ness; parameters for situations that do not occur in the training data can be fit
on the basis of interpolations of nearby situations that do. To build HMM-like
models that interpolate in this sense, we introduce the notion of a mized state
¥(t) = (s(t), x(¢)) which consists of a discrete part s € {1,2,...,ngtates } and a
continuous part x € R”.

Ag a simplifying assumption, we let the continuous part be a determinis-
tic function of past observations, i.e., x(t) = Funct.(y?™!). The mixed states
are meant to summarize histories; thus we assume that P(y(t)|y(t),y™") =

P(y(®)[4(t)) and

Ply@)lyi™") = > Plu@®lp(@) Pa@lyi™). (5)
s(t)

By putting all of the uncertainty about location into the discrete part of a mixed
state, the integral in equation (3)a has been simplified to the sum in equation
(5). While we doubt natural time series are actually generated by mixed state
processes, we use them as models because they achieve such operational simpli-

fications and their observable aspects, i.e., {Py(t )yt Vit € Z+}, provide high

likelihood fits to complex behavior using relatively few free parameters.
In our discussions as we develop models and write programs to implement
them, we have found sketches like those in fig. 1 helpful.



MSHMM

Figure 1: Chains of dependency in various model classes. Solid lines indicate
deterministic dependence and dotted lines indicate stochastic influence. In each
sketch time advances one step with the subsequent conditions appearing above
the prior conditions. Given the depicted influences on a node, earlier values of
all variables are irrelevant; thus the MM sketch indicates P(y(t)|st,y"™) =
P(y(t)|s(t) and P(s(t)]si",487") = P(s(t)|s(t-1). An AR model can be writ-
2
ten as P(y(t)|x(t)) = Vﬁexp—w with x(¢t) = F(z(t-1),y(t-1))
defined by x;(t) = y(t+1) and x;(t) = x4 (t-1) : 1 < i < m. In the sketch, the
solid lines indicate the function F' and the dotted lines indicate Py)|x(s)- In a
piecewise linear (PWL) model, the history vector x determines the partition
element s and thus the linear rule §(t) = as - x(t), then Pyy)x(s),s(¢) 18 Gaussian
with mean §(¢) and variance o2. HFHMMS are discussed in sections 4 and 6
and type 1 mixed state hidden Markov models (MSHMM1) are discussed in
section 6.

3 Incomplete Data: The EM Algorithm

In this section we review the EM algorithm® which adjusts model parameters
6 to maximize the likelihood of observations y. It operates on models'® which
include unobserved data s, Py s 4. In section 4 we describe a specific model for
time series, and in section 5 a version of the EM algorithm tailored for that
model is presented. The steps in any EM algorithm are:

90ur development follows the 1970 paper by Baum et al.[2]. In a 1977 paper Dempster
Laird and Rubin[5] called the procedure the estimate mazimize algorithm. We recommend
Brown’s dissertation[3, page 25| for clarity on the subject and Poritz[13] for a thorough bib-
liography and historical outline.

10For our application, y is a sequence of observations (y(1),%(2),.-.,y(T)) and s is a se-
quence of discrete hidden states (s(1),...,s(T)).



1. Guess a starting value of 6.

[N

. Choose 8 to maximize!! Q(6,6) = <logP 3(¥:s )>

sly.8

3. Set 6 = 4.

N

. If not converged, go to 2.

This procedure will work if,

Q(68,6) > Q(6,8) = P;(y) > Pi(y) (6a)
and
max Q(8,6) = Q(6,6) = max Fy(y) = Py(y). (6b)

The truth of the first implication (6a) is shown as follows:

log P(y) = log Py(s, y) — log P;(sly)

Note (log P;(y)) = log P;(y) because s does not appear inside the ()

s|ly,8 s|y,0°
So
log P;(y) = (log P(s,¥)),,, o — (108 P;(s¥)) 1, 4 (7)
The Gibbs inequality'? for two distributions Py, and Py, says
Pi(@) .
Z P91 log <0 or (10g Py, (.’IJ)>01 < (log 61 (x)>01
P  (2)
So

(log P3(sly))yy,p < (log Po(s[¥)) )y,
Now if 6 is chosen so that
(log P3(s,¥)),1y.0 > (o8 Pa(s,¥))gyy0 (8)
equation (7) yields the implication (6a)
Ps(y) > F(y)

and the algorithm steps uphill.
The second implication, (6b), does not always hold. Since

0 1 0

— 10 Ps(s ——,\P“
0< g 0( ’y)>s|y0:|0 0 |:P§(y) 60 9(Y):|§:07
!!For discrete s, this notation means (f)g|, o = > g Paly,0(sy)f(s)-
12While many information theory texts attribute this inequality to Kullback and Leibler[11],

it appeared 50 years earlier in chapter XI Theorem IT of Gibbs[10].




and

ﬁ<10 P;(s,y)) = LﬁP»( ) — (210 Py(s ))2
oGz “BTISY eyl T By(yyage 0 06 BT

the critical points of (log Py(s,y))s|y,¢ and Ps(y) are the same, but maxima of
the former may be saddle points of the latter. But since their basins of attraction
are low dimensional stable manifolds, it is unlikely that the algorithm will get
stuck at a saddle point of Fy(y).

sly.8

4 Hidden Filter HMMs (HFHMDMs)

HFHMMs are a class of time series models to which the EM algorithm can
be applied. They are diagrammed in fig. 1 and consist of a hidden first order
Markov process on a set of discrete states {s1, 82, ..., Snstates } and associated
with each discrete state is a linear autoregressive output process. The condi-
tional transition probabilities from any state k are given by P(s(#1)|s(t)=k),
and the output distribution at time t given state s(t) = k and history x =

(y(t_]-)ay(t - 2)7 EERE] y(t - m)) is

_ 1 (y — G — ap - x)°
P, —
y(t)|s(t),x(t) (y|k7 X) O'k\/% €xp 20_2

A model 8 consists of all of the parameters for all of the states; for each state k
the parameters are: the transition probabilities Pys11y)4(t) (4|%), and the output
distribution parameters ¢, ag, and or. We impose the following constraints:

o Discrete state transitions are Markov and independent of prior outputs'?

P(s(t)lsi™",917") = P(s(®)ls(¢-1)), (9)
and s(1) and x(1) are independent
P(s(1),x(1)) = P(s(1)) P(x(1)). (10)

Using a notation in which s, () is the #*® element in the sequence of states
g, 1.e., ¢ = (54(1),54(2),...,54(T)), we can write

T
P(q) = P(sq(1)) ] Plsq@®)Is¢(8-1)).
t=2

e Given x(¢) and s(#1), earlier values of s and y are irrelevant,

P(y(t), sy, 817 ") = Py(2), s(8)|s(t-1), x(2)), (11)
which with eqn. (9) implies
P(y(t), s()]s(t-1),x(t)) = P(y(8)|s(t), x(£)) P(s(£)[s(t-1)). (12)

13This may be appropriate if “the noise scale is at least as large as the discrete states”, but
it is a bad approximation for noise free deterministic dynamics.



Given yI, a sequence of observations for training, the EM algorithm adjusts
the model parameters # to maximize the likelihood which can be evaluated as

Py (y) ZPo y1,49),

where the variable g runs over all possible state sequences. Step 2 of the al-
gorithm prescribes selecting new parameters ¢ to maximize the expected log
likelihood <log Py;f’ ‘I’é(le’q)>q| g where the expectation is with respect to

Y1

the conditional distribution Py(q|y?) based on the old parameters §. We as-
sume x(1) is available!*, and use the assumptions to write:

Pylyi,a) = Ply(1) HP ()|sq (1), (1))
T T
= Pysq(1) T] Palsa@)lsq(t-1)) T] Pslw(®lsq(2),x(2))
t=2 t=1
T-1
long(le,q) = log Py(sq(1) +ZlogP (sq(tH1)]54(2))
t=1

+ZlogPA ()]sq (), x(2))

= log Ps(s.(1)) + ZlogPA (B1)54(2))
T = 2
1 t) — s — ag -x(t
_Z{IOgUSq(t)+§log2w+ () yq(; . X)) }
= %ot

To proceed with the optimization formally, we need Py(g|yi). If we use the
notation w(q) = Py(y{,q), then Pa(qly{) = w(q)/W, where W = 3, w(d').
The number of terms in Zq, w(q') depends exponentially on T, precluding a
direct evaluation for T's large enough to be interesting, but the sum can be
evaluated by the forward-backward algorithm which is linear in T. We will
describe the algorithm in section 5, but first we write out expressions for the
required optimization.

W(logPé(le,q»qulT’o = Z (q )IOgPu) 3(84(1))

q

+ Z w(gq) log Py(sq(t+1)]s4(t)) — %log%r

g,t=1
T _ 2
y(t) — 7, ay (s - x(t)
=3 u(g {log o) + ( OO )
g,t=1 sq(t)

14We also drop Py(1)(x(1)) in all calculations, i.e., set Py(1y(x(1)) = L.



and the maximization can be done separately by maximizing the term

F(@) =) w(g)log Ps(s(1)=s4(1)) + Z g)log Py(sq(#H1)[s,(8))  (13)

and minimizi:g the term
Go) = ; w(q) { wlt) =5, ‘;’U; ::‘1“’ xW)” log o, 1 } (14a)
= Z Bs,0),(2), X(2))- (14b)

In equation (14) @, refers to the parameters in the model that are associated
with the state s, i.e., ¥, a4, and o,. We convert the sum over ¢ and ¢ to a sum
over s and ¢:

Go) =Y {g(és, y(®),x(1) Y w(q)és,sq(t)} (15a)
s,t q
=Y 900, y(8), x())w(s, ). (15b)
s,t

The function w(s,#) introduced in equation (15) is the total probability, consid-
ering all possible paths ¢, that the system is in state s at time ¢ and that the
sequence of outputs y{ is produced by the model, i.e.,

’LU(S,t) = Pg(S(t),y,lT).

In section 5 we describe how to calculate w(s,t) using the forward-backward
algorithm. Given w(s, t), finding new values for 7, a,, and o, is fairly standard
linear fitting; solve for a, and j, by using the SVD method!® to minimize

x* = Y {uO vl - @ +x0)-a) V(D)

t
and, defining W(s) = >_, w(s, t), set

1 L2
05 = \/W Xt:w(s,t) (y@) —9)"

Introducing the notation

(7’ Js ) = s(t+1) s(t),y¥ ,0(7’ Jayl )

and denoting the new discrete transition probabilities f;; = P, Jrl)ls(t)’g(ﬁ 7), we
observe that optimizing eqn. (13) requires maximizing

F; = Zw(i,j, t)log(fi;) subject to: Z fi; =1
i, 4
153ee equation 14.3.16 on page 535 of Press et al.[14]

10



The Lagrange multiplier method yields
fij (8 Zw(iajat)‘
t

Selecting the new Ps(1),§(3) is a similar problem, and the solution is given in
equation (16) of the next section.

5 The Forward-Backward Algorithm

The forward-backward algorithm is an EM algorithm specifically for time series.
The first steps of the algorithm are two passes through the time series: One
“forwards” from ¢ = 1 to ¢ = T to calculate as, and the other “backwards”
from ¢t =T to t = 1 to calculate 8s. The factors w(s,t) and w(, j,t) used in
the previous section, can be evaluated in terms of these as and s which are
defined as follows:

a(s,t) The probability, based on the model, of the observations up to time ¢
and that the system is in state s at time ¢:

a(s,t) = P(y1,5(t)

B(s,t) The probability, based on the model, of the observations after time ¢
given that the system is in state s at time ¢ and given the previous obser-
vations y!:

6(377:) = P(yg;-ﬂ)ls(t)ay{)

These definitions and equations (11) and (12) yield
w(s, ) = als,1)B(s, 1),
w(i, j,t) = a(g, ) P(y(#1)|s(t+1)=, x(#+1)) P(s(t1)=i[s(t)=7) B(, #+1),

and the recursion formulas

a(s, ) = Y alsy, +-1) P(s(t)=sls(t-1)=s;) P(y(8)|s(t)=s, x(1)),

B(s,t) = Z B(s;,tH1) P(s(t1)=5s;|s(t)=s) P(y(tH1)|s(t+1)=s;, x(t+1)).

Note:

1. For the new model, the initial state probabilities are

Ps(1),§(3) x Ps(l)’le’g(S, y') = a(s,1)8(s,1) (16)

subject to normalization.

11



2. The overall likelihood of the observations can be evaluated after a forward
pass via:

Pﬁ(y,lr) = Za(s,T)

8

3. The forward recursion is initialized by:
a(s,1) = P(s(1)=s) P(y(1)|s(1)=s,%(1))
4. The backward recursion is initialized by:

B(s,T)=1

5.1 Programming Tricks

If
() =) als,t) = P(yh),

8

and the process has an entropy rate h, then

Y(t) e,

and something must be done to prevent under(over)flow for even moderate
values of t. The trick is: at each step in the forward recursion record only a(t)
and ¢(t), and at each step in the backward recursion record only b(t), where

t

a(j,t) = éj(t;) = P(s(t)=jly}),
and B(s,t)y(t)
_ B(s,t)y
bla, ) = y(T)

Thus for any ¢

and

a(4,t)b(i, 1)

) P(y(eH1)|s(t+1)=0, x (1)) P(s(t+1)=4|s(t)=7) ox w(%, ], ).

In each iteration of the forward-backward algorithm, there is a loop over
discrete states in which the parameters for each state 65 are reestimated. The
new estimates are in part based on the weights {w(s,t) : t =1,...,T}. Because
the Gaussians used in the models have tails that go on forever, w(s, ) > 0, V.
The times t with weights below a small threshold w(s,t) < € have little effect
on the new parameters 8,, and discarding these times speeds the computations.

12



6 Forecasts of Data Set D

We have written a family of programs that construct and optimize HFHMMs.
To seed the forward-backward algorithm we construct a HFHMM based on
a partition of the space of autoregressive history vectors that we generate by
Lloyd iteration'®. Specifying a quantization vector v, and metric d,() for each
cell s defines the partition. An autoregressive history vector x is in the cell s
which minimizes ds(vs,x). In each cell, we set the metric proportional to the
inverse covariance of the data in the cell. To construct the seed HFHMM, we
associate a hidden state with each cell of the partition, initialize the parameters
of Py()|s(t),x(¢y With a linear fit over training data that fall in the cell, and
use relative frequencies of transitions between cells to estimate discrete state
transition probabilities.

We used this procedure to fit the model that generated fig. 2a, a forecast
of data set D. The model is the result of 70 passes of the forward-backward
algorithm, each of which required about 45 minutes on a SPARCstation 2. We
estimated the probability density that constitutes the forecast using a Monte
Carlo method.

As the number of time steps is increased in very long forecasts, probability
leaks away to exponentially larger values of y. Although this effect is subtle
in fig. 2a, for simple chaotic systems it is dramatic[6]. Considering the Lya-
punov exponents helps explain this defect. A discrete state sequence ¢, starting
at the end of the observed data T and continuing for a forecast of 7 steps
g = (54(TH1),5,(TH2),...,84(T+Hr)), specifies a sequence of linear maps, ie.,
derivative information. For typical long sequences ¢, the magnitudes of the
eigenvalues of the products of these maps will grow at exponential rates given
by the Lyapunov exponents. For chaotic systems, at least one Lyapunov ex-
ponent is positive, and the composed maps are linearly, and hence globally,
unstable. The problem is that the model is linear in the sense that

T+ _ v T+
yT,q,TAX(T) - )‘yT,q,TX(T)
and
Py(Ayst7, Ax(T)) = Pyt g, x(T
9( yT,q,)\x(T)lqa x( )) = G(yT,q |q’x( ))
where y%{;’rx(n denotes the y sequence that maximizes Py (ygif |g,x(T")). Thus,

in a HFHMM there are no nonlinearities to saturate diverging y values. The
models described below address this weakness.

6.1 Output dependent state transitions

By allowing x values to influence the transition probabilities between discrete
states, one can introduce the nonlinear saturation that HFHMMs miss. In such
models, the sequence (s(t),x(t)) still constitutes a Markov process, but the
sequence of discrete states s(t) alone does not.

The assumptions we now make are:

16For details on vector quantization, see Gersho and Gray’s recent text[9]
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107 (¢) HFHMM prediction
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Figure 2: Plot a is a forecast of data set D generated by a HFHMM. The model
has 25 discrete states and the autoregressive filters are 8" order. A MSHMM1
with 20 discrete states and 8" order autoregressive filters generated the forecast
in plot b. Plots ¢ and d illustrate the long-term behavior of the models. Each
is a prediction of the distribution of y one hundred steps in the future. The
predictions relax to distributions that are close to the overall distribution of
data set D, which is plotted in e.
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(c) Most likely MSHMM1 predictions

Figure 3: These plots illustrate the short-range behavior of the models. The

first few time steps of the forecasts of

figure 2 appear in plots a and b. For each

step, the probability density is sketched and a horizontal bar indicates the true
continuation data. The squares in ¢ denote the peaks of the predictions in b,
and the line connects the points of the true continuation data.
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(a) P(s(tH1) | sf,57) = P(s(#1)|s(t),y(t), x(t))

(b) P(y(®) | sf,517") = P(y(t)ls(t), x(t))

(c) P(y(t),x(t) | s(t),s(#1)) has a multivariate normal distribution.
(d) The entire process is stationary.

This type of model is referred to in the figures as MSHMMI1. Simpler model
types assume that P(y(t) | s(t),x(¢)) and P(x(#+1)|s(#+1), s(t)) are normal and
that P(s(#1) | st,yt) = P(s(#1)[s(t), x(&1)).

Under the above assumptions 1 (¢) = (s(¢),x(¢)) is a Markov process. It is
possible to compute all quantities of interest by maintaining, for each transition
s(t) = s(#+1), the parameters of a multivariate normal distribution P(x(t) |
s(t), s(#+1)), a normally-distributed linear prediction P(y(t)|s(t), s(t+1),x(2)),
and the constant P(s(#1) | s(t)).

The EM algorithm is applicable to this class of models as well. The transition
probabilities in the mixed state space are

P(y(+1) | $(t) = P(x(#+1) | s(6+1), (2), x(2)) P(s(+1) |
P(x(¢) | s(t), s(t1))P(s(t+1) | s(2))
P(y(t) | s(#+1),s(t),x(2)) Px(D) | 5())

The EM algorithm is equivalent to maximizing (3, log P( (1) | zb(t)))qu%p.
While we do not yet have working code that maximizes this, we have obtained
good results using a naive algorithm which maximizes (3, log P(y(t) | s(t+1), s(2),
x(t)))q1yrs (2108 Px() | 5(#41), (1)), x> and (54 log P(s(t41) | s(t))) -
but ignores the denominator term, — (3, log P(x(?) | s(t)))qu;f. Application of
this naive algorithm yields essentially monotonic improvement in performance,
with each model very close to the true optimal performance for that step in the
process.

Predictions made by such a model trained on data set D appear in figs. 2b,
3b, and 3c. Even for very long forecasts there is no leakage of probability to
ever larger ys.
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