
Modeling Time Series
With Auto-Regressive Markov Models

Alexis Dimitriadis

August 6, 1992

This paper is my M.A. thesis at the Department of Mathematics of Portland
State University. It reviews the theory of Hidden Filter Hidden Markov
Models and presents an extension, Mixed State Hidden Markov Models,
developed jointly by Andrew Fraser and myself under his supervision. This
manuscript version has only trivial differences from the original.

Contents

1 Introduction and generalities 1

2 The state space approach to modeling 3

3 Maximum likelihood and the EM algorithm 5

3.1 The maximization step 7

4 Computation with state space models 7

4.1 Parametrization of Mixed State models 8

4.2 A menagerie of derived distributions 9

5 How to fit a better model 10

5.1 Fitting a Mixed State model: the naive algorithm . . 12

5.2 Modeling normal distributions 13

Fitting a multivariate normal 13

5.3 Fitting the typical vector term, G(θ̂) 14

5.4 Fitting the output term, F(θ̂) 15

5.5 Fitting the state transition terms, A(θ̂) and H(θ̂) . . 15

5.6 Fitting Hidden Filter models 15

6 The forward-backward algorithm 16

7 Acknowledgements etc. 19

References 19

1 Introduction and generalities

This section introduces the problem of modeling time series, a number of
successively more sophisticated viewpoints, and some terminology and
notation.

A time series is a sequence of real numbers {y(1), y(2), ...}, which are
understood to be the output of a process at times t = 1, 2, ... The objective of
time series modeling is to estimate, from a set of observations
yT1 = {y(1), y(2), ..., y(T)}, the likely values of the continuation of the process
past the time T . This is accomplished by deriving some kind of approximation
to the function y.

In general it is assumed that the process being modeled is stationary, that
is, its characteristics do not change with time. Thus rather than consider a
time series as a function from N or Z to R, it is more appropriate to take an
auto-regressive (AR) approach, in which the output y(t) is viewed as a function
of the history yt−1

1 . If it is assumed that y(t) depends only on the vector
x(t) ≡ yt−1

t−D of the D most recent outputs, the goal of modeling is to find an
optimal predictive function f : RD → R among some chosen class of candidate
functions. Thus a modeling strategy must include the selection of a function
class rich enough to approximate the process well, but simple enough that a
member function can be fully specified by a finite number of parameters, and
that an algorithm for choosing an optimal function can be found.

The classic method of linear regression can be viewed in this light: the
object is to fit a function f : R1 → R given by f(y) = ay + b, such that the
prediction for y(t), ŷ(t) = f(y(t− 1)), is optimal in the sense of minimizing the
expected square error; linear regression is a formula that gives the optimal
values of a and b, given a sequence of observations and the assumption that
the error is normally distributed.

Similarly, multivariate linear regression fits a linear function f : RD → R

that would predict ŷ(t) = f(yt−1
t−D). There are also formulas that optimize

higher-order polynomial functions, etc.

A more elaborate method is piecewise-linear (PL) prediction. Rather than
fit the same linear function over the entire domain, one divides the space of
D-dimensional AR vectors into regions and fits a linear function to each region.
Since any differentiable function can in principle be approximated arbitrarily
closely by a piecewise-linear function, this approach is very powerful, but
introduces the problem of choosing the best partitioning into regions.

Although any partitioning method could be used, better results are
obtained if each region consists of history vectors that are “close together”, so
that the associated output can be predicted accurately with a single linear
function. The approach we use involves vector quantization, choosing a set of

1

points (centroids) such that the total squared error
∑
t d

2(n(x(t)),x(t)) is as
small as possible. Here d(a, b) is the distance of the points a, b under a suitable
metric, and n(x) is the centroid whose distance from the vector x is minimal.
The partition is then given by the relation x1 ∼ x2 iff n(x1) = n(x2). In this
case there is no algorithm that can directly compute an optimal choice of
centroids. Lloyd iteration replaces a set of centroids with a set for which the
above sum is smaller. The process can be repeated until the choices stabilize
or until the improvement in total error becomes negligible. Although the
algorithm is widely used, it has not been proved that each iteration must
result in lower total error.

Our work takes the state space approach: the time series is viewed as the
outputs of a process that passes through unobserved (or, in our formulation,
incompletely observed) states. A well-established method is to consider the
time series as the output of a process described by a Hidden Markov Model
(HMM). At any time t, the process is in state s(t) ∈ S, where S is typically a
finite set. The sequence of states s(1), s(2), . . . constitutes a first-order Markov
process. 1 At every transition from a state si to a state sj , the process
produces an output y(t) whose value has a normal probability distribution.
The mean and variance µsi,sj , σsi,sj of y(t) given the transition si → sj are
parameters of the model. Fitting such a model involves choosing optimal
output parameters and state transition probabilities. There are iterative
algorithms that fit such models.

A combination of HMMs and piecewise linear AR models, in which the
expected output is a function of the history vector as well as the state, was
first described by Poritz[1] and dubbed Hidden Filter Hidden Markov Models.
In Fraser and Dimitriadis[2], we studied this class of models and discussed, but
did not develop in detail, a generalization which drops the assumption that the
hidden states form a Markov chain but assumes that the mixed states
ψ(t) = (s(t),x(t)) form a Markov chain. This allows us to model a time series
as the outputs of a Markov process with uncountably many possible states.

In the following sections I develop the theory behind the Hidden Filter and
Mixed State types of HMM and the algorithms involved in fitting them from a
somewhat different viewpoint than that of [2]. The development of the Mixed
State HMM has not been published anywhere before.

I consider this paper an update and continuation, rather than an
exposition, of [2]. In general I have aimed for completeness and, where
possible, for consistency of presentation with [2]. This is my excuse for
including from it substantial passages, sometimes verbatim. In particular
section 5.4 and parts of sections 2 and 3 are excerpted from [2]. Section 6

1A sequence s(1), s(2), . . . constitutes a first-order Markov process if the transition prob-
abilities at all times depend only on the most recent state, i.e., for all t ∈ N, si ∈ S,
P (s(t) = si | st−1

1) = P (s(t) = si | s(t−1)).

2

parallels the corresponding section in [2], since the forward backward
algorithm can be adapted fairly directly to Mixed State models.

2 The state space approach to modeling

This section develops the notion of time series as the noisy output of a hidden
dynamical system and recasts modeling as the problem of fitting certain
probability distributions.

At the time t an n-step forecast is a probability density Py(t+n)|yt1 . in
particular, the conditional density of a one-step forecast can be extracted from
a joint density

Py(t+1)|yt1 ≡
Pyt+1

1

Pyt1

(by definition) where Pyt1 is obtained from Pyt+1
1

by integrating out y(t+1), and
further forecasts can be computed iteratively from Py(t+1)|yt1 ; equivalently, the
joint density can be written as a product of conditionals

PyT1 = Py(1)

T−1∏
t=1

Py(t+1)|yt1 .

Thus forecasting, and time series modeling in general, can be cast as the
problem of fitting high dimensional densities (Pyt1 : Rt → R, {t = 1, 2, 3, . . .})
to a process. A standard simplifying assumption is that the process in
question is nth order Markov, meaning Py(t)|yt−1

1
= Py(t)|yt−1

t−n
. A state space

approach enables one to build a model in which the observations alone are not
a Markov process of any order, but the underlying hidden state space process
is first order Markov.

The most direct method of forecasting is to search the past for times when
conditions matched the patterns of recent observations and then guess that
what happened before will happen again. The state space approach refines
this direct method, using several near matches and refined notions of nearness
to make forecasts. Rather than simply calculating the difference or squared
difference between current measurements and historical measurements to
determine the closeness of the conditions or contexts, it supposes that contexts
are specified by points in an imperfectly observable state space. Thus to make
a forecast we first determine which locations in state space are consistent with
recent observations and then calculate the probabilities of subsequent
observations conditioned on these states.

3

In the state space view, observations are functions of internal states. The
classic analysis (which, according to Sorenson[3], originates with the ideas of
Gauss) views time series as the noisy output of an unobserved, noisy system.
In the equations

ψ(t+1) = F (ψ(t)) + ηψ(t) (1)
y(t) = G(ψ(t)) + ηy(t),

ψ is a point in an unobserved vector state space, F describes the state space
dynamics, y is an observation derived from the state by the function G, and
ηψ and ηy describe the dynamical noise and observation noise respectively.
Given probability densities for ηψ and ηy, specifying equation (1) specifies the
conditional density functions Pψ(t+1)|ψ(t) and Py(t)|ψ(t).

Equation (1) implies that

P (ψ(t+ 1) | yt−1
1 , ψt1) = P (ψ(t+ 1) | ψ(t)) (2)

P (y(t) | yt−1
1 , ψt1) = P (y(t) | ψ(t)) (3)

Thus the sequence {ψ(t)} is first order Markov,2 and the hidden state ψ(t)
encapsulates all predictive information available in the history yt−1

1 , ψt1. From
now on we will consider processes that obey equations (2) and (3), including
all processes described by (1), but dropping the requirement that the noise be
independent of the state ψ(t). For such processes, estimates of state space
distributions Pψ(t+1)|yt1 and forecasts

P (y(t+1) | yt1) =
∫
dψ(t+1)P (y(t+1) | ψ(t+1))P (ψ(t+1) | yt1)

can be updated on the basis of each new observation in a sequence recursively;
before y(t) is considered, the procedure has calculated a density Pψ(t)|yt−1

1
in

the hidden state space and the new observation is used to update the density
estimate to

Pψ(t+1)|yt1 =
∫
dψ(t)Pψ(t+1)|ψ(t),y(t)Pψ(t)|yt−1

1
=
∫
dψ(t)

Pψ(t+1)|ψ(t)

Py(t)|ψ(t)
Pψ(t)|yt−1

1

If ψ ∈ Rm, then at each step calculating the conditional distribution Pψ(t+1)|yt1
involves the old Pψ(t)|yt−1

1
and Pψ(t+1)|ψ(t),y(t) : R2m+1 → R but not

Pψ(t+1)|yt1 : Rm+t → R directly.
2We will frequently make use of the property

P (A | B,C) = P (A)⇒ P (A | B) = P (A) (4)

I.e., whenever a set of conditions {B,C} is independent of the probability of an event A, any
subset of the conditions may itself be added or dropped without affecting the probability.
Thus equation (2) implies that P (ψ(t+ 1) | ψt1) = P (ψ(t+ 1) | ψ(t)).

4

Thus, using state space methods, one can build and evaluate high
dimensional non-Markovian joint densities for an observable y on the basis of
lower dimensional functions. It should be noted that PyT1 is completely defined
by Pψ(t+1)|ψ(t)), Py(t)|ψ(t) and Pψ(1). Thus a process can be modeled by
specifying just these functions.

3 Maximum likelihood and the EM algorithm

This section introduces the EM algorithm and shows the first steps of how an
estimate of the characteristics of a process could be deduced from its output.3

Given a time series yT1 , any stochastic model θ for which the associated
probability Pθ(yT1) is non-zero could in principle have generated the output
yT1 . But for many models yT1 will occur with very low probability, and their
typical output will be nothing like yT1 . The goal of modeling is to select a
model θ for which the output yT1 is as “typical” as possible, i.e., for which
Pθ(yT1), the likelihood of the data given the model, is as large as possible. This
is known as maximum likelihood estimation.

The EM (estimate maximize) algorithm iteratively adjusts model
parameters θ to maximize the likelihood of observations y. It operates on
models which include unobserved data s, Pθ,y,s. For our application, y is a
sequence of observations {y(t)} and s is a sequence of hidden states {ψ(t)}.
Note, however, that the EM algorithm in its general form does not assume the
unobserved data form a Markov chain.

The steps in any EM algorithm are:

1. Guess a starting value of θ.

2. Choose θ̂ to maximize4
〈

logPy,s,θ̂(y, s)
〉

s|y,θ

3. Set θ = θ̂.

4. If not converged, go to 2.

The EM algorithm will work if Pθ̂(y) ≥ Pθ(y) with equality iff the
likelihood is at a local maximum at θ. Brown[4] proceeds as follows:

Pθ̂(y) =
Pθ̂(s,y)
Pθ̂(s|y)

3The first part of this section is excerpted, with only trivial changes, from [2]. The discus-
sion there is in turn based on Brown[4]. Poritz[1] gives additional references.

4For discrete s, this notation means 〈f〉s|y,θ =
∑

s Ps|y,θ(s|y)f(s).

5

logPθ̂(y) = logPθ̂(s,y)− logPθ̂(s|y)

Note
〈
logPθ̂(y)

〉
s|y,θ = logPθ̂(y) because s does not appear inside the 〈〉s|y,θ.

So

logPθ̂(y) =
〈
logPθ̂(s,y)

〉
s|y,θ −

〈
logPθ̂(s|y)

〉
s|y,θ (5)

The Gibbs inequality for two distributions P and Q says

∑
x

P (x) log
Q(x)
P (x)

≤ 0 (6)

In the current notation:

〈logPθ2(x)〉θ1 ≤ 〈logPθ1(x)〉θ1

So 〈
logPθ̂(s|y)

〉
s|y,θ ≤ 〈logPθ(s|y)〉s|y,θ

Now if θ̂ is chosen so that〈
logPθ̂(s,y)

〉
s|y,θ > 〈logPθ(s,y)〉s|y,θ (7)

equation (5) yields

Pθ̂(y) > Pθ(y)

and the algorithm steps uphill. Since[
∂

∂θ̂

〈
logPθ̂(s,y)

〉
s|y,θ

]
θ̂=θ

=
[

1
Pθ̂(y)

∂

∂θ̂
Pθ̂(y)

]
θ̂=θ

and

[
∂2

∂θ̂2

〈
logPθ̂(s,y)

〉
s|y,θ

]
θ̂=θ

=

 1
Pθ̂(y)

∂2

∂θ̂2
Pθ̂(y)−

〈(
∂

∂θ̂
logPθ̂(s,y)

)2
〉

s|y,θ


θ̂=θ

the critical points of 〈logPθ(s,y)〉s|y,θ and Pθ(y) are the same, but maxima of
the former may be saddle points of the latter.

6

3.1 The maximization step

For a system described by equations (2) and (3), we can begin to see how step
2 of the EM algorithm can be carried out.

Let y ≡ yT1 , s ≡ ψT+1
1 . Then

P (y, s) = P (ψ(T+1), y(T) | ψT1 , yT−1
1)P (ψT1 , y

T−1
1) (8)

=
T∏
t=1

P (ψ(t+1), y(t) | ψt1, yt−1
1)× P (ψ(1))

=
T∏
t=1

P (ψ(t+1), y(t) | ψ(t))× P (ψ(1))

The task, then, is to maximize

〈
logPθ̂(y, s)

〉
s|y,θ =

〈
logPθ̂(ψ(1)) +

T∑
t=1

logPθ̂(ψ(t+1), y(t)|ψ(t))

〉
s|y,θ

(9)

In the next section a specific, computationally tractable model for time
series is presented; section 5 discusses how expression (9) can be maximized
for such models.

4 Computation with state space models

This section describes a concrete class of processes that can be described
parametrically. The Hidden Filter and Mixed State types of HMM are defined.

We will now develop a computationally tractable special case of equations
(2) and (3). We assume that we can decompose the hidden state ψ(t) as the
pair (s(t),x(t)), where x(t) is the D-dimenstional history vector yt−1

t−D and
s(t) ∈ S = {s1, s2, ..., snstates}, a finite set. The state ψ(t) ∈ S × RD is referred
to as a mixed state.

The process can be written in the form of equation (1) as

s(t+ 1) = Fs(ψ(t)) + ηs(t) = q(ψ(t), t) (10)
x1(t+ 1) = F1(ψ(t)) + ηx1(t) = f(ψ(t)) + ε(ψ(t), t)
xi(t+ 1) = Fi(ψ(t)) + ηxi(t) = xi−1(t) + 0 (i = 2, ..., D)

y(t) = G(ψ(t)) + ηy(t) = f(ψ(t)) + ε(ψ(t), t)

I will refer to the class of all processes that fit equation (10) as
Autoregressive Markov processes; here I will discuss two special cases of such

7

models, the Hidden Filter HMM first described by Poritz[1] and the Mixed
State HMM, which as far as we know was introduced in [2] and is first
described in detail in these pages.

The class of models that we call Mixed State HMMs corresponds to
equations (10) with only the following additional assumption:

• (11)The distribution P (y(t),x(t) | s(t) = si, s(t+1) = sj) is multivariate
normal with mean and covariance matrix specific to the transition
si → sj .

The class of Hidden Filter HMMs corresponds to equations (10) along with
the additional assumptions:

1. The sequence of discrete states {s(t)} forms a Markov process.

2. The distribution of each output y(t) depends on the state ψ(t) but is
independent of all past and future discrete states. That is,
P (y(t)|ψt1, sTt+1) = P (y(t)|ψ(t)). From this it follows that
P (s(t+1) | ψ(t)) = P (s(t+1) | s(t)).

3. The distribution P (y(t),x(t) | s(t) = si) is multivariate normal with
mean and covariance matrix specific to the discrete state si. Thus given
s(t), the noise ε(ψ(t), t) is normally distributed and independent of x(t),
and the prediction f(ψ(t)) is a linear function of x(t).

Thus a Mixed State HMM is a very general model of an AR Markov
process, while the Hidden Filter HMM incorporates significant simplifying
assumptions. Both types of model can be fully determined by a finite number
of parameters and can be fitted reasonably efficiently, as will be shown in the
following sections.

The remainder of this paper concentrates on Mixed State models. The
equations appropriate to Hidden Filter models will be noted in section 5.6.

4.1 Parametrization of Mixed State models

A Mixed State model can be represented by the following parameters:

• The number of discrete states nstates and the dimension D of the history
vector x. Once chosen, these stay fixed.

• For each transition si → sj , the parameters of the distributions:

P (x(t) | s(t+1) = sj , s(t) = si) (typical si → sj history vector),
P (y(t) | x(t), s(t+1) = sj , s(t) = si) (typical si → sj output), and
P (s(t+1) = sj | s(t) = si) (the overall probability of a transition).

8

The first is modeled as a multivariate normal (assumption (11)), the
second as a normally distributed linear prediction (also assumption
(11)), and the third is a constant. These are computed from the data
and optimized iteratively.

• For each discrete state si, the probability P (s(1) = si), a constant. This also
is computed from the data.

These distributions are sufficient to calculate other probabilities of interest, as
will be shown in the next section. The mathematics of parametrizing normal
distributions will be discussed in section 5.2.

4.2 A menagerie of derived distributions

Using the above parameters, we have available5

P (x(t+1)|s(t+1), s(t),x(t)) = P (y(t)|s(t+1), s(t),x(t)) δ(x(t+1)D2 −x(t)D−1
1)(12)

P (x(t) | s(t)) =
∑
j

P (x(t) | s(t+1)=j, s(t))P (s(t+1)=j | s(t)), (13)

and by use of the latter also

P (s(t+1)=j | s(t)=i,x(t)) = (14)

=
P (x(t) | s(t+1)=j, s(t)=i)

P (x(t) | s(t)=i)
P (s(t+1)=j | s(t)=i)

Thus we can compute

P (ψ(t+1) | ψ(t)) =
= P (x(t+1)|s(t+1), s(t),x(t)) P (s(t+1)|s(t),x(t)) (15)

= P (y(t)|s(t+1), s(t),x(t)) δ(x(t+1)D2 − x(t)D−1
1) (16)

×P (x(t) | s(t+1), s(t))
P (x(t) | s(t))

P (s(t+1) | s(t))

P (y(t) | ψ(t))) = (17)

=
∑
j

P (y(t) | s(t), s(t+1) = j,x(t))P (s(t+1) = j | s(t),x(t))

5The notation δ(x), where x is a vector or real number, represents the Dirac delta, for
which δ(x) = 0 for all x 6= 0, but

∫
δ(x)dx = 1.

9

In practice, it is more efficient to use

P (y(t) | ψ(t)) =

=
1

P (x(t) | s(t))
∑
j

(
P (y(t) | s(t), s(t+1) = j,x(t))

×P (x(t) | s(t+1) = j, s(t))P (s(t+1) = j | s(t))
)

Finally, note that if we understand ψ(t+1) to refer to the mixed state
(s(t+1), y(t),x(t)D−1

1), we have

P (s(t+1) | ψ(t), y(t)) = P (ψ(t+1) | ψ(t), y(t)) =
P (ψ(t+1) | ψ(t))
P (y(t) | ψ(t))

(18)

5 How to fit a better model

This section derives an explicit optimization algorithm for Mixed State Markov
models. The arithmetic of modeling multivariate normal distributions is also
presented.

We can now return to the optimization of
〈
logPθ̂(y, s)

〉
s|y,θ as given in

equation (9), which is required in order to carry out the EM algorithm. Since
in AR Markov models y(t) = x1(t+1) is actually a coordinate of ψ(t+1), we
have for such models

P (yT1 , ψ
T+1
1) = P (ψ(1))×

T∏
t=1

P (ψ(t+1) | ψt1, yt−1
1) δ(y(t)− x1(t+1))

Note also that for such models, P (ψ(t) | yT1) = P (s(t) | yT1) δ(x(t)− yt−1
t−D).

For convenience we arrange for x(1) to be known (easily done by leaving the
first few available outputs out of yT1) and assign it a probability of 1. Then yT1 ,
sT+1

1 completely determine a mixed state sequence s = ψT+1
1 ; the ensemble〈

logPθ̂(y, s)
〉
s|y,θ can be replaced with〈

logPθ̂(y
T
1 , q)

〉
q|yT1 ,θ

,

which is taken over all sequences q = sT+1
1 of discrete states, and we can

replace equation (9) with

〈
logPθ̂(y, s)

〉
s|y,θ =

〈
logPθ̂(ψ(1)) +

T∑
t=1

logPθ̂(ψ(t+1)|ψ(t))

〉
q|yT1 ,θ

(19)

=
∑
q

Pθ(q|yT1) logPθ̂(ψ(1)) +
∑
q,t

Pθ(q|yT1) logPθ̂(ψ(t+1)|ψ(t))

≡ A(θ̂) +B(θ̂)

10

The second term of this can be converted to a sum over s and t. We begin
by writing it as

B(θ̂) =
∑
t

∑
q

∑
i

δq(t),i
∑
j

δq(t+1),jPθ(q | yT1) logPθ̂(ψ(t+1)|ψ(t))

Since the only non-zero terms to this occur when q(t) = i, q(t+ 1) = j, we can
replace Pθ̂(ψ(t+1) | ψ(t)) with Pθ̂(ψ(t+1) = (j,x(t+1)) | ψ(t) = (i,x(t)).

B(θ̂) =
∑
t

∑
i

∑
j

(∑
q

δq(t),iδq(t+1),jPθ(q | yT1)

)
logPθ̂((j,x(t+1)) | (i,x(t)))

To simplify the quantity in parentheses, we note that since s(t), s(t+1) are
determined by q, we can write δq(t),iδq(t+1),j = Pθ(s(t)=i, s(t+1)=j | q, yT1).
Thus we have∑

q

δq(t),iδq(t+1),jPθ(q | yT1) =
∑
q

Pθ(s(t) = i, s(t+1) = j, q | yT1)

= Pθ(s(t) = i, s(t+1) = j | yT1)
≡ w(j, i, t)

where w(j, i, t) is the total probability over all paths q that the state at time t
is i and the state at time t+ 1 is j, given that the sequence of outputs is yT1 ,
i.e.,

w(j, i, t) ≡ Pθ(s(t+1) = j, s(t) = i | yT1)

We can now write

B(θ̂) =
∑
t,i,j

w(j, i, t) logPψ(t+1)|ψ(t),θ̂((j,x(t+1)) | (i,x(t))) (20)

It is a similar, and much simpler, matter to rewrite A(θ̂) as a sum over
s(1), and since we consider x(1) to be given,

A(θ̂) =
∑
i

Pθ(s(t)=i | yT1) logPθ̂(ψ(1) = (i,x(1)))

=
∑
i

w(i, 1) logPθ̂(s(1) = i),

where w(i, t) ≡ Pθ(s(t) = i | yT1) =
∑
j w(j, i, t).

Thus for an AR Markov process, the EM algorithm has been reduced to
the problem of maximizing the finite sum A(θ̂) +B(θ̂). Note that the number
of summands in B(θ̂) is linear in t.

11

5.1 Fitting a Mixed State model: the naive algorithm

For a Mixed State HMM, equation (16) allows us to write

B(θ̂) = (21)∑
t,i,j

w(j, i, t) logPθ̂(y(t)|s(t+1)=j, s(t)=i,x(t))

+
∑
t,i,j

w(j, i, t) logPθ̂(x(t) | s(t+ 1)=j, s(t)=i)

+
∑
t,i,j

w(j, i, t) logPθ̂(s(t+1)=j | s(t)=i)

−
∑
t,i

w(i, t) logPθ̂(x(t) | s(t)=i)

We now come to the one big hole in the development of Mixed State
HMMs: we do not have an efficient algorithm that we have shown to maximize
A(θ̂) +B(θ̂). Although it is possible to maximize this by global optimization
of all parameters of the model θ̂, such optimization is very time-consuming.
However, it is possible to optimize, separately, each of the terms

A(θ̂) =
∑
i

w(i, 1) logPθ̂(s(1) = i) (22)

F (θ̂) ≡
∑
t,i,j

w(j, i, t) logPθ̂((y(t)|s(t+1)=j, s(t)=i,x(t))

G(θ̂) ≡
∑
t,i,j

w(j, i, t) logPθ̂(x(t) | s(t+ 1)=j, s(t)=i)

H(θ̂) ≡
∑
t,i,j

w(j, i, t) logPθ̂(s(t+1)=j | s(t)=i)

Doing so exhausts the free parameters of the model. We refer to the
strategy of maximizing these and ignoring the denominator term
−
∑
t,i w(i, t) logPθ̂(x(t) | s(t)=i) as the “naive algorithm”. It turns out that

application of this naive algorithm yields essentially monotonic improvement
in likelihood, with each model very close to the true optimal performance for
that step in the process (which we estimated by global optimization of the
parameters of θ̂).

Maximizing the above expressions requires the quantity w(j, i, t) =
P (s(t1)=j, s(t)=i | yT1). This can be efficiently computed by the forward
backward algorithm, which is the subject of section 6. Given w(j, i, t), the
following sections show how to maximize the expressions of (22).

12

5.2 Modeling normal distributions

This rather parenthetical section covers the arithmetic of modeling multivariate
normal distributions.

A multivariate normal distribution is parametrized by its mean µ and
covariance matrix C. For the standard normal distribution (mean 0, unit
covariance matrix), the probability density of a point x is given by

PI(x) =
1

(2π)n/2
e−

1
2‖x‖

2
(23)

For other normal distributions, the density is computed essentially by
changing to a set of coordinates that make the distribution into a standard
normal cloud and then applying formula (23), with the added complication of
a rescaling factor equal to the determinant of the coordinate change.

If T is a matrix giving a coordinate change such that the map
f(x) ≡ T(x− µ) maps a set of vectors to a standard normal distribution, the
probability density is given by

P (x) =
|T|

(2π)n/2
e−

1
2 (T (x−µ))t·(T (x−µ)) (24)

Let A be a collection of N column vectors with mean 0. Then its
covariance matrix is C = 1/N A×At. In general, if a collection of vectors X
has covariance matrix C and T is a coordinate change matrix, TX will have
covariance matrix 1/N TX× (TX)t = TCTt. Thus if TX has identity
covariance matrix, TtT = C−1.

Accordingly, equation (24) is equivalent to the more common form

P (x) =

∣∣C−1
∣∣1/2

(2π)n/2
e−

1
2 (x−µ)t C−1(x−µ)

To model a normal distribution, it is thus sufficient to keep as parameters
the mean µ and either the inverse covariance matrix C−1 or the coordinate
change matrix T. We have used both methods at different times. I prefer to
use the coordinate change matrix, since obtaining the inverse covariance
matrix from it is trivial, while the converse is more complicated.

Fitting a multivariate normal

Given a collection of column vectors X as before, let A be the array of row
vectors (x− µ)t, for x ∈ X. Note that X, A have the same covariance matrix.

13

The method of Singular Value Decomposition6 converts the array A to
A = UWVt, where W is diagonal, V has orthonormal rows and columns, U
has orthonormal columns, UtU = VtV = VVt = 1. (If U is square, it is also
row-orthonormal).

Then AtA = VWUt UWVt = V W2 Vt. Since V is orthogonal, we have
V−1 = Vt. Then A(

√
N VW−1) has covariance matrix

1/N (AVW−1)t(AVW−1) = 1/N
√
NW−1VtAt

√
NAVW−1 = I

Thus the coordinate change that takes X to a standard normal cloud has
matrix

T = (
√
NVW−1)t =

√
NW−1Vt. (25)

When given a set of weights w along with the vectors X, we first calculate
the weighted mean

µ = 1/
(N∑
i=1

wi

)∑
i

wiXi, (26)

where Xi is the i-th column vector of X. Note that (Tax)t (Tax) =
a2(Tx)t(Tx). Form A by letting Ai =

√
s ·
√
wi(Xi − µ)t, so that vector Xi

contributes to the covariance with weight wi and s = N/
∑
i wi makes the

entire sample have weight N , as if no weights were used. Calculate T as above.

5.3 Fitting the typical vector term, G(θ̂)

The quantity

G(θ̂) =
∑
t,i,j

w(j, i, t) logPθ̂(x(t) | s(t+ 1)=j, s(t)=i)

can be maximized separately for each transition i→ j. By the Gibbs
inequality, the normal distribution that maximizes G(θ̂) is the distribution
with the mean and covariance matrix of the weighted sample of vectors
(w(j, i, t),x(t)). This is computed as described in section 5.2.

6See Section 2.9 of [5].

14

5.4 Fitting the output term, F(θ̂)

Given w(j, i, t), F (θ̂) can be maximized separately for each transition i→ j.
The normal distribution P (y(t) | s(t+1)=j, s(t)=i,x(t)) is determined by its
variance σi,j and its mean, which is an affine linear function of x(t) given by
ŷ(t) = yi,j + ai,j · x(t). Finding new values for yi,j , ai,j , and σi,j is fairly
standard linear fitting. Solve for ai,j and yi,j using Singular Value
Decomposition7 to minimize

χ2 =
∑
t

{
y(t)

√
w(j, i, t)− (yi,j + ai,j · x(t))

√
w(j, i, t)

}2

,

and set

σi,j =

√
1∑

t w(j, i, t)

∑
t

w(j, i, t) (y(t)− ŷ(t))2
.

5.5 Fitting the state transition terms, A(θ̂) and H(θ̂)

Since the a priori transition probabilities are the same for all values of t, we
can write

H(θ̂) =
∑
i

∑
j

(∑
t

w(j, i, t)
)

logPs(t+1)|s(t),θ̂(j | i)

We can maximize this quantity separately for each i: By the Gibbs inequality
(equation (6)),

∑
j P (j) logQ(j) is maximized when Q = P . Thus H(θ̂) is

maximized when for each i, we set

Ps(t+1)|s(t),θ̂(j | i) ∝
∑
t

w(j, i, t)

Similarly we maximize A(θ̂) by setting

Pθ̂(s(1) = i) = w(i, 1)

5.6 Fitting Hidden Filter models

We now return to the Hidden Filter model defined in section 4. This section
describes how the computations of the preceding sections apply to this class of
models.

A Hidden Filter model is defined by the values of the following parameters
(compare section 4.1).

7See equation 14.3.16 on page 535 of [5]

15

• The number of discrete states nstates and the dimension D of the history
vector x. Once chosen, these stay fixed.

• For each transition si → sj , the probability P (s(t+1) = sj | s(t) = si).

• For each discrete state si, the probabilities P (s(1) = si) and
P (y(t) | s(t) = si,x(t)).

Of these the last is a normally distributed affine linear prediction, the others
are constants. All are computed from the data and optimized iteratively.

For this class of models equation (16) reduces to

P (ψ(t+1) | ψ(t)) = P (s(t+1) | s(t))P (y(t)|s(t),x(t))

and accordingly we can replace expression (21) with

B(θ̂) =
∑
t,i

w(i, t) logPθ̂(y(t)|s(t)=i,x(t))

+
∑
t,i,j

w(j, i, t) logPθ̂(s(t+1)=j | s(t)=i)

Each of these terms (and the term A(θ̂), which is the same as for the Mixed
State models) can be maximized separately, as shown in the preceding
sections. In this case, since we do not ignore any part of expression (9), the
EM algorithm guarantees that Pθ̂(y

T
1) ≥ Pθ(yT1).

6 The forward-backward algorithm

Here we show how to compute the last missing piece, the quantity w(j, i, t), via
the forward backward algorithm.8

The factor w(j, i, t) = P (s(t+ 1) = j, s(t) = i|yT1), used throughout the
optimizations of section 5, can be calculated with the help of the forward
backward algorithm, which in turn depends on the αs and βs defined as
follows:

α(s, t) The probability, based on the model, of the observations up to time t
and that the system is in state s at time t:

α(s, t) ≡ P (s(t) = s, yt1)

8This section is adapted, step for step, from the corresponding section in [2], where the
computations appropriate for Hidden Filter HMMs are developed.

16

β(s, t) The probability, based on the model, of the observations after time t
given that the system is in state s at time t and given the previous
observations yt1:

β(s, t) ≡ P (yTt+1 | s(t) = s, yt1)

If we let W ≡ 1/P (yT1), we have the following identities:

w(s, t) = W α(s, t) β(s, t) (27)

w(j, i, t) = W β(j, t+1) P (y(t+ 1) | ψ(t+1) = (j,x(t+1))) (28)
× P (s(t+1) = j | ψ(t) = (i,x(t)), y(t)) α(i, t)

The derivation of w(s, t) is trivial. For w(j, i, t), we note that

P (yTt+2 | st+1
1 , yt+1

1)

= P (yTt+2 | ψt+1
1 , y(t+1))

= P (yTt+2 | ψ(t+1), y(t+1))

= P (yTt+2 | s(t+1), yt+1
t−D+1)

By equation (4), it then follows that

P (yTt+2 | s(t+ 1) = j, s(t) = i, yt+1
1)

= P (yTt+2 | s(t+ 1) = j, yt+1
1)

= β(j, t+ 1).

Thus we have

w(j, i, t) = P (s(t+1) = j, s(t) = i, yT1)/P (yT1)
= W P (yTt+2 | s(t+1) = j, s(t) = i, yt+1

1)
×P (y(t+1) | s(t+1) = j, s(t) = i, yt1)
×P (s(t+1) = j | s(t) = i, yt1)P (s(t) = i, yt1)

= Wβ(j, t+1) P (y(t+1) | ψ(t+1) = (j,x(t+1)))
× P (s(t+1) = j | ψ(t) = (i,x(t)), y(t)) α(i, t)

The quantities α and β can in turn be evaluated by the following recursion
formulas.

α(j, t) = P (s(t) = j, yt1)

=
∑
i

P (s(t) = j, s(t− 1) = i, yt1)

17

=
∑
i

P (y(t) | s(t) = j, s(t−1) = i, yt−1
1)

× P (s(t) = j | s(t−1) = i, yt−1
1)P (s(t−1) = i, yt−1

1)

=
∑
i

P (y(t) | ψ(t) = (j,x(t))) P (s(t) = j | ψ(t−1) = (i,x(t−1)), y(t−1)) α(i, t−1)

= P (y(t) | ψ(t) = (j,x(t)))
∑
i

P (s(t) = j | ψ(t−1) = (i,x(t−1)), y(t−1)) α(i, t−1)

β(i, t) = P (yTt+1 | s(t) = i, yt1)

=
∑
j

P (yTt+1, s(t+1) = j | s(t) = i, yt1)

=
∑
j

P (yTt+1 | s(t+1) = j, s(t) = i, yt1)P (s(t+1) = j | s(t) = i, yt1)

=
∑
j

(
P (yTt+2 | s(t+1) = j, s(t) = i, yt+1

1)

× P (y(t+1) | s(t+1) = j, s(t) = i, yt1)
× P (s(t+1) = j | s(t) = i, yt1)

)
=

∑
j

(β(j, t+1) P (y(t+1) | ψ(t+1) = (j,x(t+1)))

× P (s(t+1) = j | ψ(t) = (i,x(t)), y(t)))

The recursion is initialized from the values

α(s, 1) = P (s(1) = s, y(1)) = P (y(1) | ψ(1) = (s,x(1)))P (s(1) = s | x(1))
β(s, T) = P (∅ | s(T) = s, yT1) = 1

A convenient way to represent the matrices α and β in a way that avoids
floating-point overflow is presented in [2], and easily adapts to the
requirements of Mixed State models.

18

7 Acknowledgements etc.

The portion of the work described here that I am responsible for was
supported by funding from the PSU Systems Science Ph.D. program and by
an NSF grant to Andrew Fraser. I am also grateful to him for teaching me
about time series; I would not know a thing about them if it were not for him.

I would also like to thank Mara Tableman, who taught me statistics and
has been a great resource numerous times since then; and Tom Shuell and Ray
Melton, who were reckless enough to ask me what on earth I was working on,
leading to lengthy explanations that now form the first section of this paper.

References

[1] A. B. Poritz. Hidden Markov models: A guided tour. In Proc. IEEE Intl.
Conf. on Acoust. Speech and Signal Proc., 1988.

[2] A. M. Fraser and A. Dimitriadis. Forecasting probability densities by
using Hidden Markov Models with mixed states. In A. S. Weigend and
N. A. Gershenfeld, editors, Time Series Prediction: Forecasting the Future
and Understanding the Past, pages 264–281. Addison-Wesley, 1994.

[3] H. W. Sorenson. Least-squares estimation: from Gauss to Kalman. IEEE
Spectrum, pages 63–68, July 1970.

[4] P. F. Brown. The Acoustic-Modeling Problem in Automatic Speech
Recognition. PhD thesis, Carnegie Mellon University, Pittsburgh, 1987.

[5] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Veterling.
Numerical Recipes in C. Cambridge University Press, Cambridge, 1988.

[6] J. W. Gibbs. Elementary Principles in Statistical Mechanics Developed
with Especial Reference to the Rational Foundation of Thermodynamics.
Yale University Press, 1902. Republished by Dover in 1960.

[7] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression.
Kluwer, Norwell MA, 1992.

19

