

Dik Bakker Lancaster University

<u>Period 1990 – 2009:</u>

<u>Period 1990 – 2009:</u>

Computer programs <-> Typological projects

a. Language sampling

Period 1990 - 2009:

- a. Language sampling
- **b.** Inference of universal implications

Tools for Typology

Period 1990 - 2009:

- a. Language sampling
- **b.** Inference of universals
- c. Lexical classification of languages

Tools for Typology

Period 1990 - 2009:

- a. Language sampling
- **b.** Inference of universals
- c. Lexical classification of languages
- d. Language contact and borrowing

Period 1990 - 2009:

- a. Language sampling
- **b.** Inference of universals
- c. Lexical classification of languages
- d. Borrowing

Tools for Typology

<u>Period 1990 – 2009:</u>

- a. Language sampling (4)
- b. Inference of universals (2)
- c. Lexical classification (12)
- d. Borowing (3)

Tools for Typology CSV TXT inference classify borrow sampling tools

Tools for Typology CSV TXT classify borrow sampling inference tools Pascal/C++

UNIX

Points today:

Points today:

1. Give an impression of local software (∞)

Points today:

- 1. Give an impression of local software (∞)
- 2. How to make it accessible?

Overview:

Tools for Typology

Overview:
1. Sampling

Overview:

- 1. Sampling
- 2. Inference of universals

•

Tools for Typology

Overview:

- 1. Sampling
- 2. Inference of universals
- 3. Lexical classification

Overview:

- 1. Sampling
- 2. Inference of universals
- 3. Lexical classification
- 4. Nothing about Borrowing:

Bakker, D., J. Gómez-Rendón & E. Hekking (2008). 'Spanish meets Guaraní, Otomí and Quichua: a multilingual

confrontation'.

In Th. Stolz, D. Bakker & R. Palomo (eds)

Aspects of Language Contact. Mouton de Gruyter, 165-238.

Tools for Typology

Overview:

- 1. Sampling
- 2. Inference of universals
- 3. Lexical classification
- 4. Accessibility

1. Language Sampling

Together with:

Kees Hengeveld (Amsterdam)
Peter Kahrel (Amsterdam)
Jan Rijkhoff (Aarhus)

Reference:

Rijkhoff J. & D. Bakker (1998). 'Language sampling'. *Linguistic Typology* 2-3, 263-314.

Typological project: typically 50 – 500 languages

Question: how to select?

Language sampling

General issues:

Many features more or less tight to genetic relationships

- Many features tight to genetic relationships
- Areal and contact phenomena

- Many features tight to genetic relationships
- Areal and contact phenomena
- Distribution of some linguistic features and relations between them are well-known, of (most) others not at all

- Many features tight to genetic relationships
- Areal and contact phenomena
- Only some distributions and relations well-known
- Bibliographic gaps

-

Language sampling

Language sampling

- 1. Random sample
- → Only when each language same chance

Language sampling

- 1. Random sample
- 2. Probability sample
- → Measures chance on occurrence of certain feature value, or of language type

Language sampling

Three types of samples:

- 1. Random sample
- 2. Probability sample
- → Measure chance certain feature value/type

Genetic and areal bias: independency ~ (in)stability

Language sampling

- 1. Random sample
- 2. Probability sample
- 3. Variety sample
- → Exploration of unknown feature/type: maximum variation

Language sampling

Three types of samples:

1. Random sample → large

2. Probability sample → small

3. Variety sample → intermediate - large

Language sampling

Three types of samples:

1. Random sample → large

2. Probability sample → small

3. Variety sample → intermediate - large

Language sampling

Variety sample:

Maximize variety ~ maximize diversity factor:

4

Language sampling

Variety sample:

Maximize variety ~ maximize diversity factor:

language(s) from all families

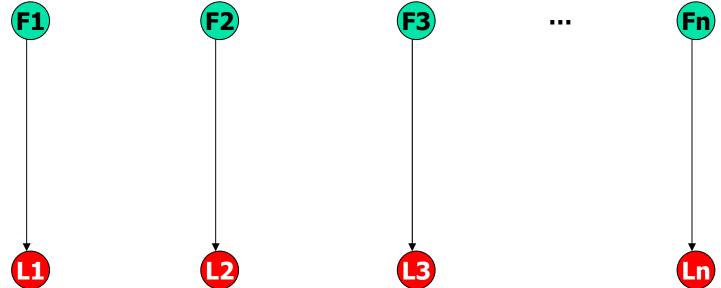
Language sampling

Variety sample:

Maximize variety ~ maximize diversity factor:

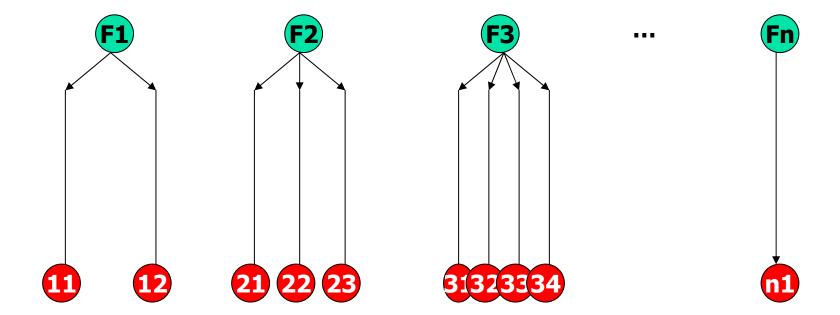
- language(s) from all families
- from as many subgroupings as fit in sample size

Sample size = n (minimum)



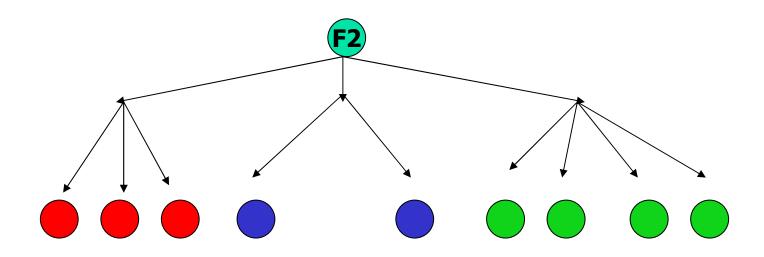
(any language from family for which documentation available)

Sample size > n



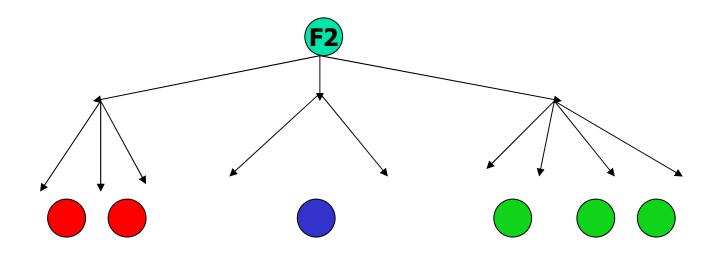
(any language from group for which documentation available)

Sample size >>> n

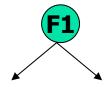


(any language for which documentation available)

Sample size >> n



(any language for which documentation available)

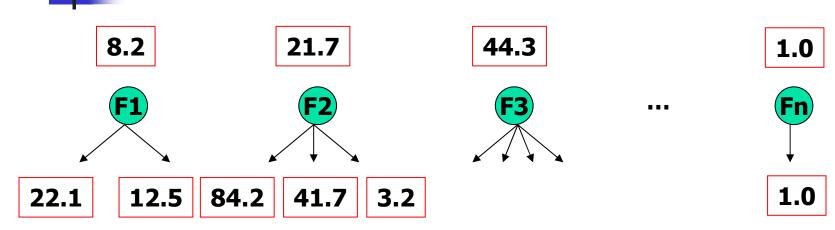


Diversity Value per node, based on:

- NOT number of daughter nodes
- NOT on number of daughter languages, but
- Internal Complexity (breadth per level, diminishing)

8.2 21.7 44.3 1.0 Fn

Diversity Value per node, based on internal complexity a. Per family



Diversity Value per node, based on internal complexity

- a. Per family
- **b.** Recursively per lower node

Procedure:

1. Choose language classification (Ethn/Ruh/Voeg)

- 1. Choose language classification (Ethn/Ruh/Voeg)
- 2. Calculate DV value per node (all tree-like)

- 1. Choose language classification
- 2. Calculate DV value per node
- 3. Establish sample size (minimum = n of families)

- 1. Choose language classification
- 2. Calculate DV value per node
- 3. Establish sample size
- 4. Assign languages to families weighted by DV (> 0)

- 1. Choose language classification
- 2. Calculate DV value per node
- 3. Establish sample size
- 4. Assign languages to families weighted by DV
- 5. Recursively assign languages to lower groups

- 1. Choose language classification
- 2. Calculate DV value per node
- 3. Establish sample size
- 4. Assign languages to families weighted by DV
- 5. Recursively assign languages to lower groups
- 6. Stop when no languages left to assign

- 1. Choose language classification
- 2. Calculate DV value per node
- 3. Establish sample size
- 4. Assign languages to families weighted by DV
- 5. Recursively assign languages to lower groups
- 6. Stop when no languages left to assign
- 7. Optional: select language names (random / criteria)

-

DV method: results

```
Classification: Ruhlen91
```

Criterion 1: Diversity Value

Sample size: $50 (0.95 \% \text{ of } 5273, \min=30)$

DV method: results

```
Classification: Ruhlen91
Criterion 1: Diversity Value
Sample size: 50 ( 0.95 % of 5273, min=30)
Afro-Asiatic (55.53/6/258)
Altaic (15.07/2/62)
Korean-Japanese (3.00/3/4)
Australian (67.58/30/262)
Austric (137.41/3/1186)
    Austro-Tai (106.03/2/1027)
        Austronesian (118.17/4/970)
        Daic (4.67/2/57)
    Austroasiatic (28.08/2/155)
    Miao-Yao (2.00/2/4)
```

Tools for Typology

DV method: results

```
Classification: Ruhlen91
Criterion 1: Diversity Value
Sample size: 50 ( 0.95 % of 5273, min=30)
Afro-Asiatic (55.53/6/258)
Altaic (15.07/2/62)
Korean-Japanese (3.00/3/4)
Australian (67.58/30/262)
Austric (137.41/3/1186)
    Austro-Tai (106.03/2/1027)
        Austronesian (118.17/4/970)
        Daic (4.67/2/57)
    Austroasiatic (28.08/2/155)
    Miao-Yao (2.00/2/4)
```

Tools for Typology

56

DV method: results

```
Classification: Ruhlen91
Criterion 1: Diversity Value
Sample size: 50 ( 0.95 % of 5273, min=30)
Afro-Asiatic (55.53/6/258)
Altaic (15.07/2/62)
Korean-Japanese (3.00/3/4)
Australian (67.58/30/262)
Austric (137.41/3/1186)
    Austro-Tai (106.03/2/1027)
        Austronesian (118.17/4/970)
        Daic (4.67/2/57)
    Austroasiatic (28.08/2/155)
    Miao-Yao (2.00/2/4)
```

Tools for Typology

57

Options:

1. Random selection of languages under nodes

4

DV method

```
Classification: Ethnologue15
Criterion 1: Diversity Value
  Sample size: 150 ( 2.06 % of 7299)
  Austronesian (192.99/12/1268) 5
      Unclassified (1.00/0/1)
          1. Ketangalan (G)
      East Formosan (3.00/3/5)
          Central (1.00/0/2)
          2. Amis
                        (G)
      Bunun (1.00/0/1)
          3. Bunun
                        (G)
      Western Plains (2.00/2/2)
          Thao (1.00/0/1)
          4. Thao
                        (G)
```

- 1. Random selection of languages under nodes
- 2. Stratification on basis of feature values

- 1. Random selection of languages under nodes
- 2. Stratification on basis of feature values
- → Problem: bibliographic bias

- 1. Random selection of languages under nodes
- 2. Stratification on basis of feature values
- 3. Evaluate existing samples

Options:

- 1. Random selection of languages under nodes
- 2. Stratification on basis of feature values
- 3. Evaluate existing samples

Program has been used for a large number of studies (MA, PhD, articles, books)

2. Inference of Universals

Together with:

Anna Siewierska (Lancaster)

Reference:

Bakker, D. (2008).

'LINFER: inferring implications from the WALS database'.

STUF 61-3, 186-198.

UNIVERSALS

Greenberg (1963):

UNIVERSALS

Greenberg (1963):

Absolute: Universal 3

Languages with dominant VSO order are always prepositional.

UNIVERSALS

Greenberg (1963):

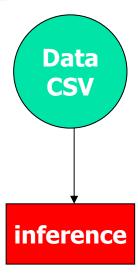
Absolute: Universal 3

Languages with dominant VSO order are always prepositional.

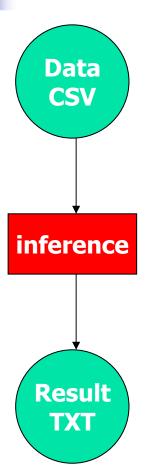
Statistical: Universal 4

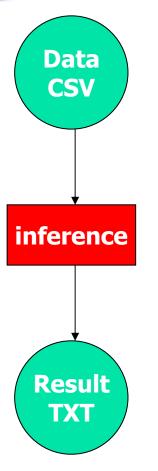
With overwhelmingly greater than chance frequency, languages with normal SOV order are postpositional.

LINFER

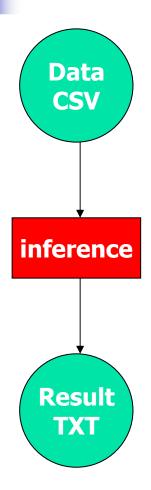


LINFER

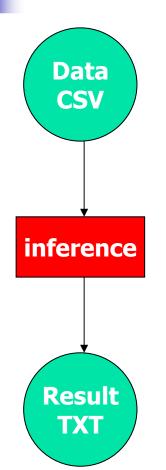




LGNAME		
Abipon		
Abkhaz		
Abun		
Aceh		
Achuma		

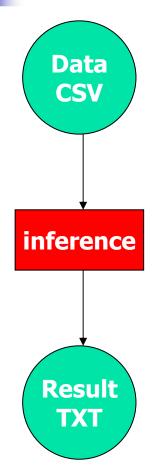


LGNAME	SmrkP	SmrkV	SmrkN	SmrkH
Abipon	123	No	Sgpl	No
Abkhaz	123	No	Sgpl	No
Abun	12	No	Sg	No
Aceh	12	Yes	Nonum	Irr
Achuma	123	No	Sgdupl	Yes



LGNAME	SmrkP→	SmrkV	SmrkN	SmrkH
Abipon	123	No	Sgpl	No
Abkhaz	123	No	Sgpl	No
Abun	12	No	Sg	No
Aceh	12	Yes	Nonum	Irr
Achuma	123	No	Sgdupl	Yes

$$SmrkP = 123 \rightarrow SmrkV = No (ABS)$$



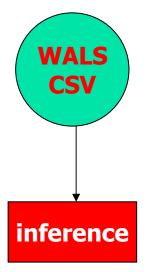
LGNAME	SmrkP ←	SmrkV	SmrkN	SmrkH
Abipon	123	No	Sgpl	No
Abkhaz	123	No	Sgpl	No
Abun	12	No	Sg	No
Aceh	12	Yes	Nonum	Irr
Achuma	123	No	Sgdupl	Yes

$$SmrkP = 123 \rightarrow SmrkV = No (ABS)$$

$$SmrkV = No \rightarrow SmrkP = 123 (0.75)$$

- Automatic inference of implications (A & S):
- → generate + test

LINFER: on WALS



Haspelmath, M., M. Dryer, D. Gil & B. Comrie (eds) (2005).

The World Atlas Of Language Structures.

Oxford: Oxford University Press WALS Online: http://wals.info/

Number of languages: 2558

Number of variables: 143

A first run:

All languages All variables 2558 139 (minus SignLgs)

First run:

All languages 2558 All variables 139

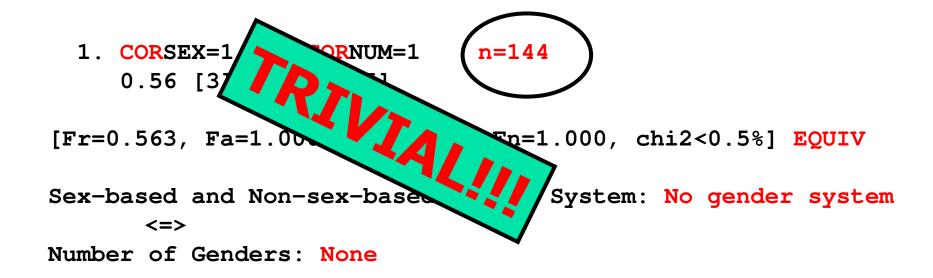
Results:

Potential implications: 413,886Accepted implications: 1,385 (= 0.33%)

[Fr=0.563, Fa=1.000, Fc=1.000, Fn=1.000, chi2<0.5%] EQUIV

Sex-based and Non-sex-based Gender System: No gender system
<=>

Number of Genders: None



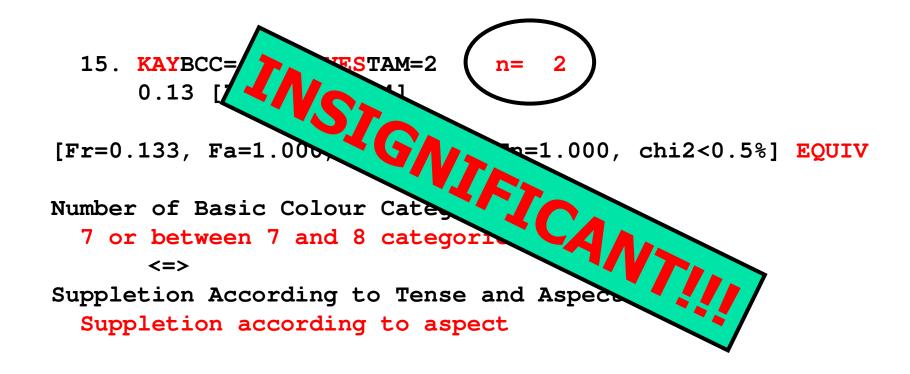
[Fr=0.133, Fa=1.000, Fc=1.000, Fn=1.000, chi2<0.5%] EQUIV

Number of Basic Colour Categories:

7 or between 7 and 8 categories
<=>

Suppletion According to Tense and Aspect:

Suppletion according to aspect



n=291

[Fr=0.486, Fa=0.983, Fc=0.655, Fn=0.511, chi2<0.5%] STAT

Relationship between the Order of Object:

Verb-object and prepositional (VO&Prep)
=>

Order of Relative Clause and Noun:

Relative clause follows noun (NRel)

[Fr=0.486, Fa=0.983, Fc=0.655, Fn=0.511, chi2<0.5%] STAT

Relationship between the Order of Object:

Verb-object and prepositional (VO&Prep)
=>

Order of Relative Clause and Noun:

Relative clause follows noun (NRel)

VO & Prep → NRel

```
57. DRYRPO=4 => DRYREL=1
0.49 [5] - 0.73 [7]
```

n=291

[Fr=0.486 Fa=0.983, Fc=0.655, Fn=0.511, chi2<0.5%] STAT

Relationship between the Order of Object:

Verb-object and prepositional (VO&Prep)
=>

Order of Relative Clause and Noun:

Relative clause follows noun (NRel)

VO & Prep → NRel

EXC: cnt hak mnd squ tuk

Automatic inference of implications (Abs & Stat)

- Automatic inference of implications (Abs & Stat)
- Ordered from 'strongest' to 'weakest'

- Automatic inference of implications (A & S)
- Ordered from 'strongest' to 'weakest'
- Filtering thresholds

- Automatic inference of implications (A & S)
- Ordered from 'strongest' to 'weakest'
- Filtering thresholds
- Selection on subsamples of languages

- Automatic inference of implications (A & S)
- Ordered from 'strongest' to 'weakest'
- Filtering thresholds
- Selection on subsamples of languages
- Grouping of variables and values

- Automatic inference of implications (A & S)
- Ordered from 'strongest' to 'weakest'
- Filtering thresholds
- Selection on subsamples of languages
- Grouping of variables and values
- Analysis of exceptions

EXPLANATION COUNTEREXAMPLES:

[Fr=0.481, Fa=0.952, Fc=0.531, Fn=0.221, chi2<0.5%] STAT

Exponence of Selected Inflectional Form:

No case

=>

M-T Pronouns

No M-T pronouns

EXC: fre grb lkt

```
9. BICEXP=5 => NICMTP=1 n= 60

EXC: fre grb lkt

** Possible explaining factors: **
fre:
NICMTP=2 (M-T pronouns, paradigmatic)
HAAEVC=5 (Separate particle)
MADUVU=3 (Uvular continuants only)
grb:
NICMTP=2 (M-T pronouns, paradigmatic)
lkt:
NICMTP=2 (M-T pronouns, paradigmatic)
```

- Automatic inference of implications (A & S)
- Ordered from 'strongest' to 'weakest'
- Filtering thresholds
- Selection on subsamples of languages
- Grouping of variables and values
- Analysis of exceptions
- Chaining of implications (AND/OR)

VO & Prep → NRel

Two major questions:

Two major questions:

1. When is an implication statistically reliable?

Two major questions:

- 1. When is an implication statistically reliable?
- 2. When is an implication linguistically interesting?

[Fr=0.486, Fa=0.983, Fc=0.655, Fn=0.511, chi2<0.5%] STAT

Relevance: proportion of values for premisse $(p / \Sigma p_i)$

Applicability: proportion of counterexamples ($p \rightarrow \neg q$)

Coverage: proportion of non-premisse languages with conclusion $(\neg p \rightarrow q)$

Dominance: proportion of languages with relevant value for variables (p / q)

Negation: proportion of languages with reverse implication $(\neg p \rightarrow \neg q)$

Chi2: for n x m tables (not tetrachoric)

Fisher Exact: when tetrachoric and 1 empty cell

Other statistics: < export data >

[Fr=0.486, Fa=0.983, Fc=0.655, Fn=0.511, chi2<0.5%] STAT

Relevance: proportion of values for premisse (p / Σp_i)

Applicability: proportion of counterexamples (p $\rightarrow \neg q$)

Coverage: proportion of non-premisse languages with conclusion $(\neg p \rightarrow q)$

Dominance: proportion of languages with relevant value for variables (p / q)

Negation: proportion of languages with reverse implication $(\neg p \rightarrow \neg q)$

Chi2: for n x m tables (not tetrachoric)

Fisher Exact: when tetrachoric and 1 empty cell

Other statistics: <export data >

[Fr=0.486, Fa=0.983, Fc=0.655, Fn=0.511, chi2<0.5%] STAT

Relevance: proportion of values for premisse (p / Σp_i)

Applicability: proportion of counterexamples (p $\rightarrow \neg q$)

Coverage: proportion of non-premisse languages with conclusion $(\neg p \rightarrow q)$

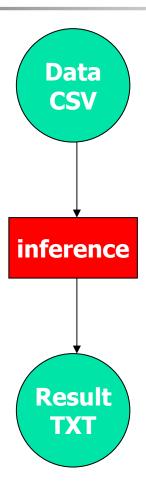
Dominance: proportion of languages with relevant value for variables (p / q)

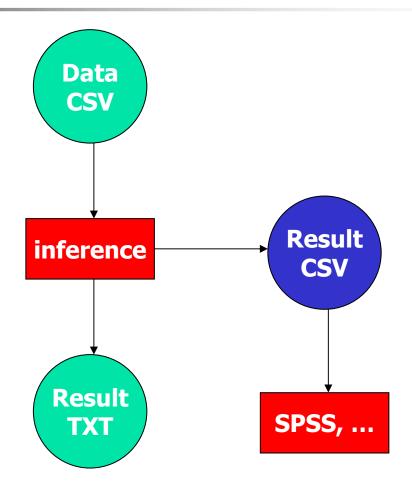
Negation: proportion of languages with reverse implication ($\neg p \rightarrow \neg q$)

Chi2: for n x m tables (not tetrachoric)

Fisher Exact: when tetrachoric and 1 empty cell

Other statistics: <export data >





LINFER: DIACHRONY?

DIACHRONY?:

[Fr=0.395, Fa=0.949, Fc=0.625, Fn=0.628, chi2<0.5%] STAT

Inclusive/Exclusive Distinction in Verba:

No inclusive/exclusive opposition =>

Inclusive/Exclusive Distinction in Pronoun:

No inclusive/exclusive opposition

EXC: abk cle map mrd

LINFER: RELATED?

RELATED?:

WALS(-like) database, observations:

WALS(-like) database:

 Less than 1:1000 logically possible implications are of potential interest

WALS(-like) database:

- Less than 1:1000 logically possible implications are of potential interest
- Most equivalences are trivial

WALS(-like) database:

- Less than 1:1000 logically possible implications are of potential interest
- Most equivalences are trivial
- Many statistically valid implications are hard to interpret linguistically

WALS(-like) database:

- Less than 1:1000 logically possible implications are of potential interest
- Most equivalences are trivial
- Many statistically valid implications are hard to interpret linguistically
- Need for definition: interesting universal

3. Lexical Language Classification

Project ASJP (= Automated Similarity Judgment Program)

ASJP are: Sören Wichmann (BRD; Netherlands)

Viveka Velupillai (BRD)

André Müller (BRD)

Robert Mailhammer (BRD)

Hagen Jung (BRD)

Eric Holman (USA)

Anthony Grant (UK)

Dmitry Egorov (Russia)

Pamela Brown (USA)

Cecil Brown (USA)

Dik Bakker (UK; Netherlands)

```
ASJP are:
               Sören Wichmann (BRD; Netherlands)
               Viveka Velupillai (BRD)
               André Müller (BRD)
               Robert Mailhammer (BRD)
               Hagen Jung (BRD)
               Eric Holman (USA)
               Anthony Grant (UK)
               Dmitry Egorov (Russia)
               Pamela Brown (USA)
               Cecil Brown (USA)
               Dik Bakker (UK; Netherlands)
```

Reference:

Bakker, D., A. Müller, V. Velupillai, S. Wichmann, C. H. Brown, P. Brown, D. Egorov, R. Mailhammer, A. Grant, E. W. Holman (2009). 'Adding typology to lexicostatistics: a combined approach to language classification'. *Linguistic Typology* 13, 167-179.

Project:

ASJP (Automated Similarity Judgment Program)

Overall goal:

Automatic reconstruction of language relationships (lexical, grammatical → genetic, areal, typological, ...)

ASJP (Automated Similarity Judgment Program)

Overall goal:

Automatic reconstruction of language relationships

Basis:

Distance matrix between individual languages based on lexical features

ASJP (Automated Similarity Judgment Program)

Overall goal:

Automatic reconstruction of language relationships

Basis:

Distance matrix between individual languages based on lexical features

Method:

Lexicostatistics: mass comparison of <u>basic</u> lexical items,

ASJP (Automated Similarity Judgment Program)

Overall goal:

Automatic reconstruction of language relationships

Basis:

Distance matrix between individual languages based on lexical features

Method:

Lexicostatistics: mass comparison of basic lexical items, extended by all relevant data available

ASJP (Automated Similarity Judgment Program)

As in traditional lexicostatistics, but:

ASJP (Automated Similarity Judgment Program)

As in traditional lexicostatistics, but:

1. use of computational algorithms and tools

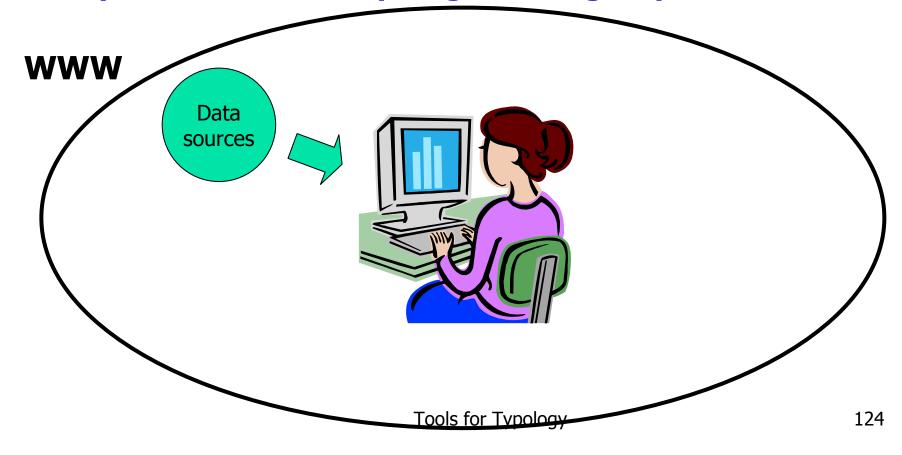
Project:
ASJP (Automated Similarity Judgment Program)

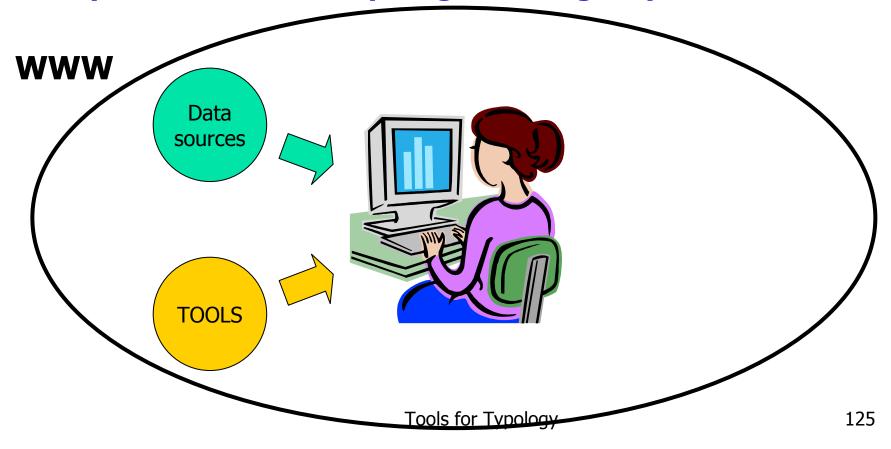
As in traditional lexicostatistics, but:

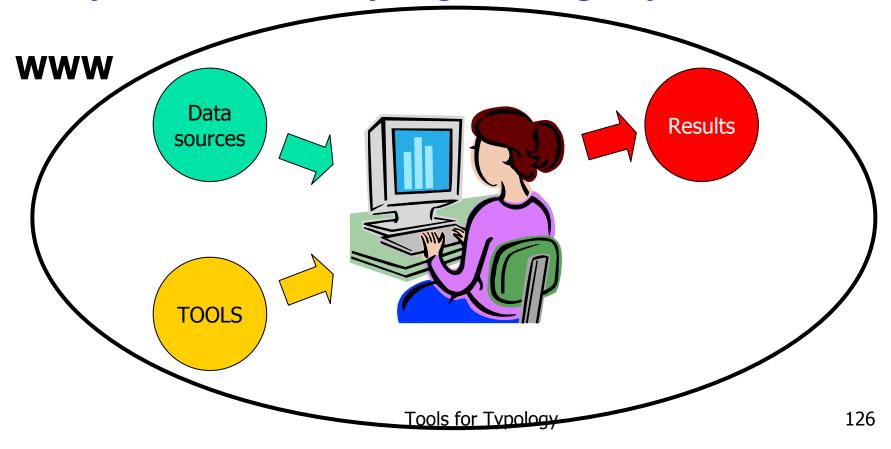
- 1. use of computational algorithms and tools
- 2. methodology from classification in biology

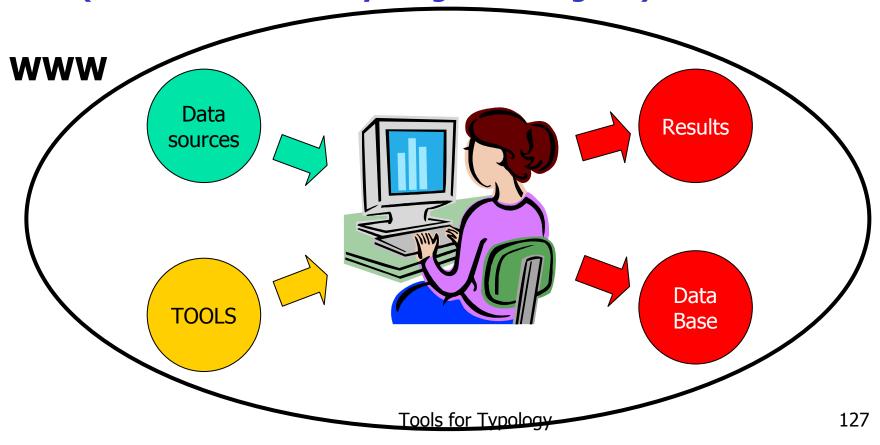
ASJP (Automated Similarity Judgment Program)

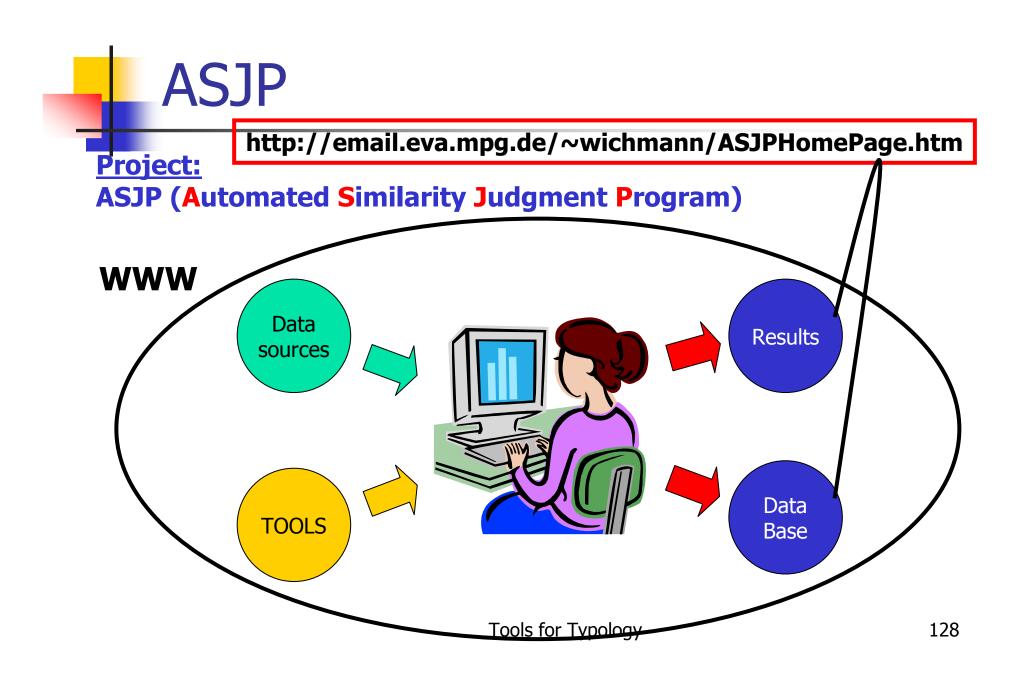
WWW

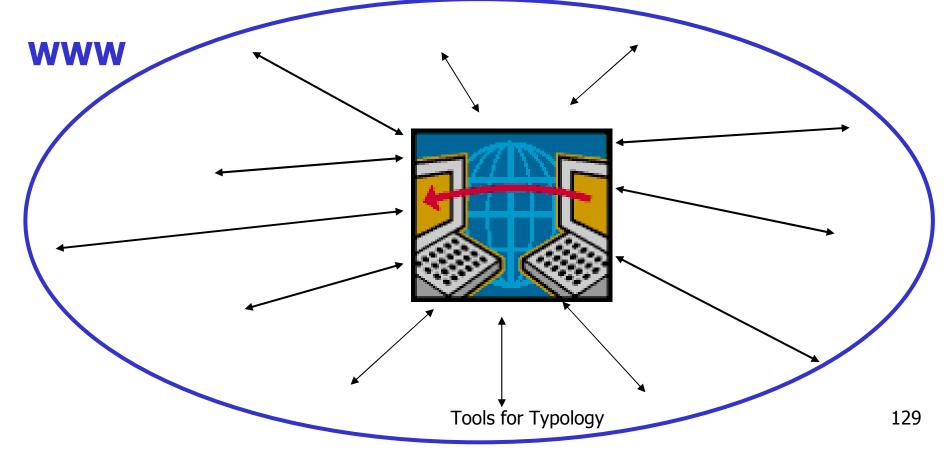








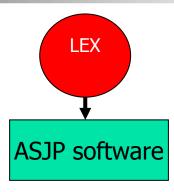




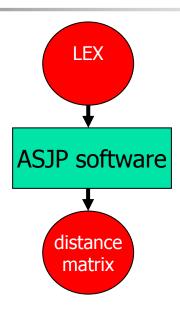
4

Overview ASJP system

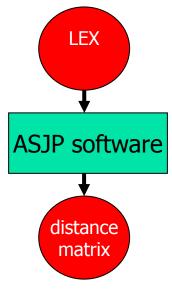
LEX



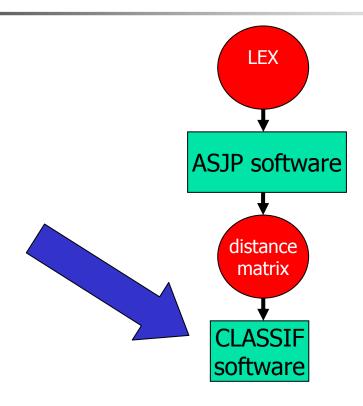
1

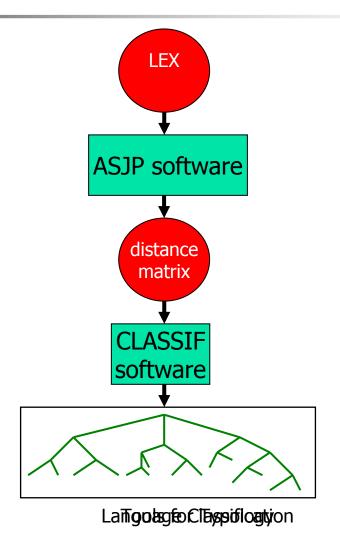


1

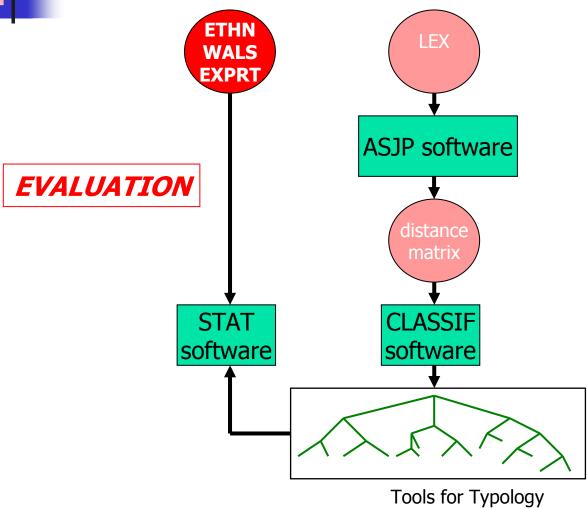


DUTCH	ENGLISH	53.3
DUTCH	FRENCH	72.7
DUTCH	MANDARIN	93.8
•••		

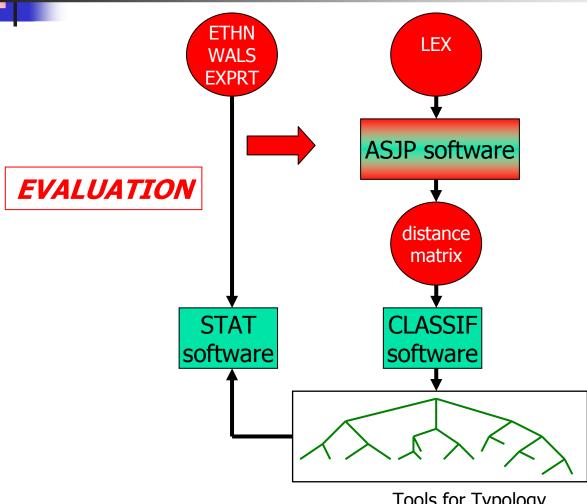




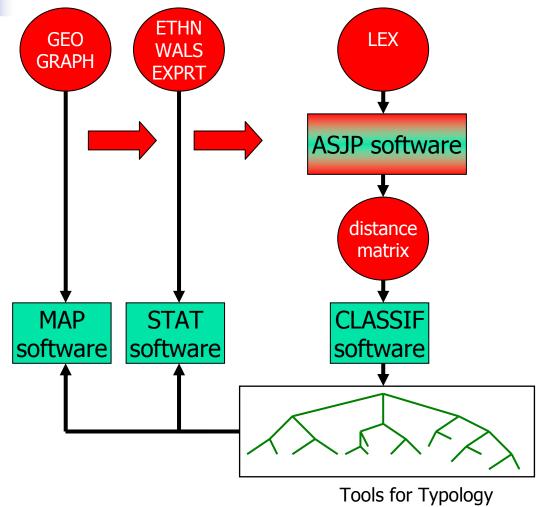
Existing Expert Classifications:



Existing Expert Classifications:

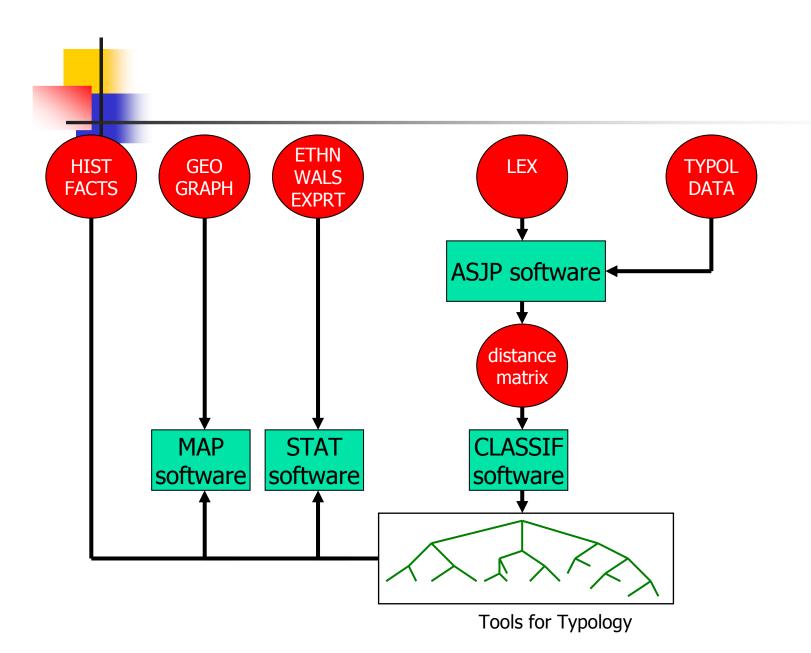


Tools for Typology





Tools for Typology



Lexical items

Data: Word list Morris Swadesh (1955):

100 basic meanings

1.1	21. dog	41. nose	61. die	81. smoke
2. you	22. louse	42. mouth	62. kill	82. fire
3. we	23. tree	43. tooth	63. swim	83. ash
4. this	24. seed	44. tongue	64. fly	84. burn
5. that	25. leaf	45. claw	65. walk	85. path
6. who	26. root	46. foot	66. come	86. mountain
7. what	27. bark	47. knee	67. lie	87. red
8. not	28. skin	48. hand	68. sit	88. green
9. all	29. flesh	49. belly	69. stand	89. yellow
10. many	30. blood	50. neck	70. give	90. white
11. one	31. bone	51. breasts	71. say	91. black
12. two	32. grease	52. heart	72. sun	92. night
13. big	33. egg	53. liver	73. moon	93. hot
14. long	34. horn	54. drink	74. star	94. cold
15. small	35. tail	55. eat	75. water	95. full
16. woman	36. feather	56. bite	76. rain	96. new
17. man	37. hair	57. see	77. stone	97. good
18. person	38. head	58. hear	78. sand	98. round
19. fish	39. ear	59. know	79. earth	99. dry
20. bird	40. eye	60. sleep	80. cloud	100. name

Lexical items: further reduction

Early ASJP analyses have shown:

→It is not necessary to take all 100 words,

but rather: the MOST STABLE subset

Early ASJP analyses have shown:

→It is not necessary to take all 100 words,

but rather: the MOST STABLE subset

Least formal variation in accepted classifications

(e.g. Dryer's Genera; specialized classifications)

GERMANIC FISH

AFRIKAANS fis

BERNESE_GERMAN fis

BRABANTIC fis

CIMBRIAN fiS

DANISH fesk

DUTCH vis

ENGLISH fis

FAROESE fiskur

FRANS_VLAAMS fis

FRISIAN_WESTERN fisk

GOTHIC fisks

ICELANDIC fiskir

JAMTLANDIC fisk

LIMBURGISH VES

LUXEMBOURGISH feS

NORTH_FRISIAN_AMRUM fask

GERMANIC FISH

AFRIKAANS fis

BERNESE_GERMAN fis

BRABANTIC fis

CIMBRIAN fiS

DANISH fesk

DUTCH vis

ENGLISH fis

FAROESE fiskur

FRANS_VLAAMS fis

FRISIAN_WESTERN fisk

GOTHIC fisks

ICELANDIC fiskir

JAMTLANDIC fisk

LIMBURGISH VES

LUXEMBOURGISH feS

NORTH_FRISIAN_AMRUM fask

1 proto form

GERMANIC TREE

AFRIKAANS bom

BERNESE_GERMAN boum

BRABANTIC bu3m

DANISH trE7

DUTCH bom

ENGLISH tri

FAROESE trEa

FRANS_VLAAMS bom

FRISIAN_WESTERN bi3m | by~Em

GOTHIC bagms | triu

ICELANDIC th~ry~E

JAMTLANDIC tre

LIMBURGISH boum

LUXEMBOURGISH bam

NORTH_FRISIAN_AMRUM bum

NORTHERN_LOW_SAXON bom

NORWEGIAN BOKMAAL tre

GERMANIC TREE

AFRIKAANS bom

BERNESE_GERMAN boum

BRABANTIC bu3m

DANISH trE7

DUTCH bom

ENGLISH tri

FAROESE trEa

FRANS_VLAAMS bom

FRISIAN_WESTERN bi3m|by~Em

GOTHIC bagms | triu

ICELANDIC th~ry~E

JAMTLANDIC tre

LIMBURGISH boum

LUXEMBOURGISH bam

NORTH_FRISIAN_AMRUM bum

NORTHERN_LOW_SAXON bom

NORWEGIAN_BOKMAAL tre

2 forms

FIN-UGRIC FISH

FINNISH kala

ESTONIAN kala

KARELIAN kolo

KILDIN_SAAMI kuly

KOMI_PERMYAK Ceri

KOMI_ZYRIAN cyeri

LULE_SAAMI kuole

MEADOW_MARI kol

MORDVIN(MOKSHA) **kEl**

NORTH_SAAMI guoli

SKOLT_SAAMI kuel

SOUTH_SAAMI gueli3

UDMURT cyorig

VEPS kala

NENETS xaly

SELKUP q3l3

CSANGO hol

HUNGARIAN hal

FIN-UGRIC FISH FINNISH kala **ESTONIAN** kala kolo **KARELIAN** KILDIN_SAAMI **kuly** KOMI_PERMYAK Ceri KOMI_ZYRIAN cyeri LULE_SAAMI **kuole** MEADOW_MARI kol MORDVIN(MOKSHA) kEl 1 proto form NORTH_SAAMI guoli kuel SKOLT_SAAMI SOUTH_SAAMI gueli3 **UDMURT** cyorig kala **VEPS NENETS** xaly **SELKUP q3l3 CSANGO** hol **HUNGARIAN** hal Tools for Typology

FIN-UGRIC TREE

FINNISH puu

INARI_SAAMI muoro

KARELIAN pu

KILDIN_SAAMI mur

KOMI_PERMYAK pu

KOMI_ZYRIAN pu

LULE_SAAMI muora

MEADOW_MARI puSeNxe

MORDVIN(MOKSHA) SuftE

NORTH_SAAMI muoro

SKOLT_SAAMI mu3r mw3r

SOUTH_SAAMI moer3

UDMURT pispu

VEPS pu

NENETS pya

SELKUP po

CSANGO fo

HUNGARIAN fa

FIN-UGRIC TREE **FINNISH** puu INARI_SAAMI muoro **KARELIAN** pu KILDIN_SAAMI mur KOMI_PERMYAK pu KOMI_ZYRIAN pu LULE_SAAMI muora MEADOW_MARI puSeNxe MORDVIN(MOKSHA) **SuftE** 4 forms **NORTH_SAAMI** muoro mu3r | mw3r SKOLT_SAAMI SOUTH_SAAMI moer3 **UDMURT** pispu **VEPS** pu **NENETS** pya **SELKUP** po **CSANGO** fo **HUNGARIAN**

Early analyses have shown:

Most stable 40/100 item subset gives:

Early analyses have shown:

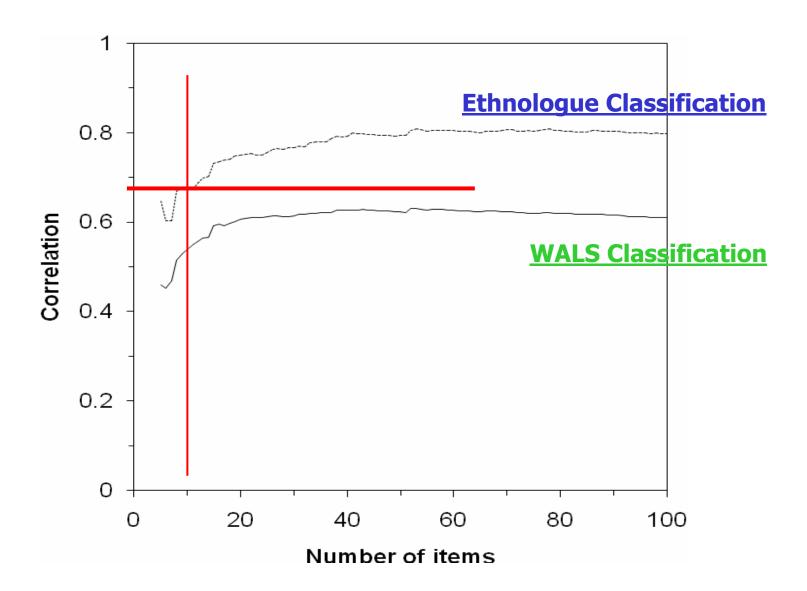
Most stable 40/100 item subset gives:

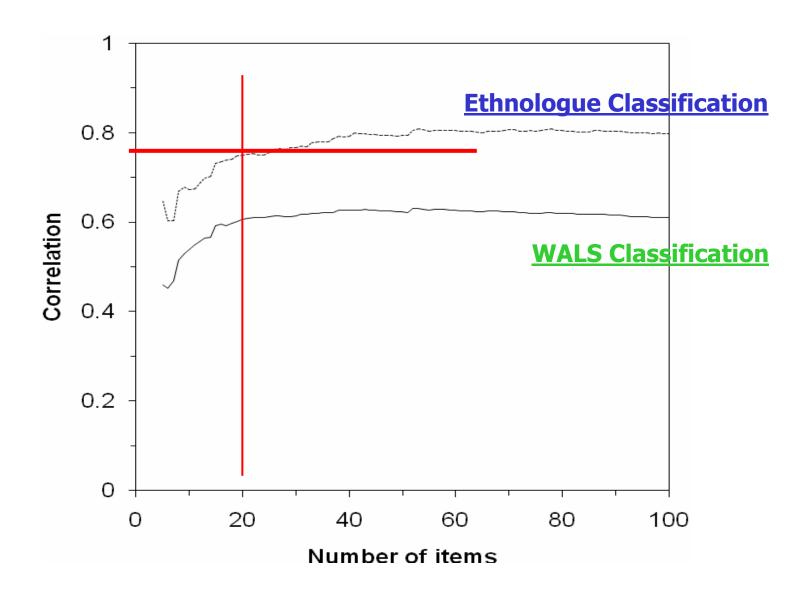
- at least the same results as > 40

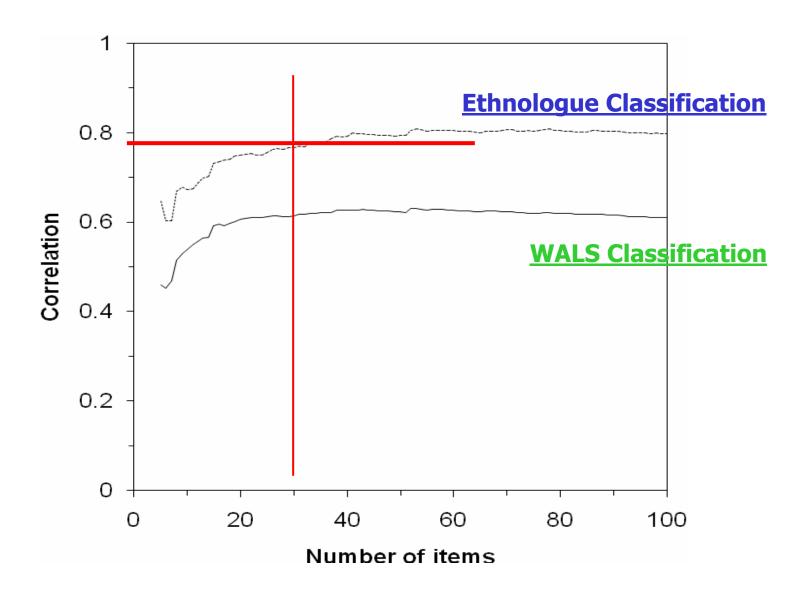
Early analyses have shown:

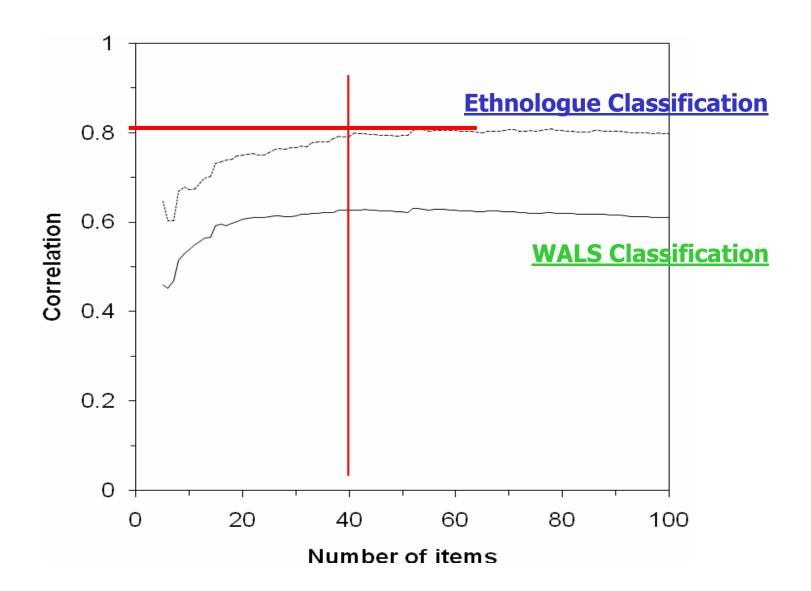
Most stable 40/100 item subset gives:

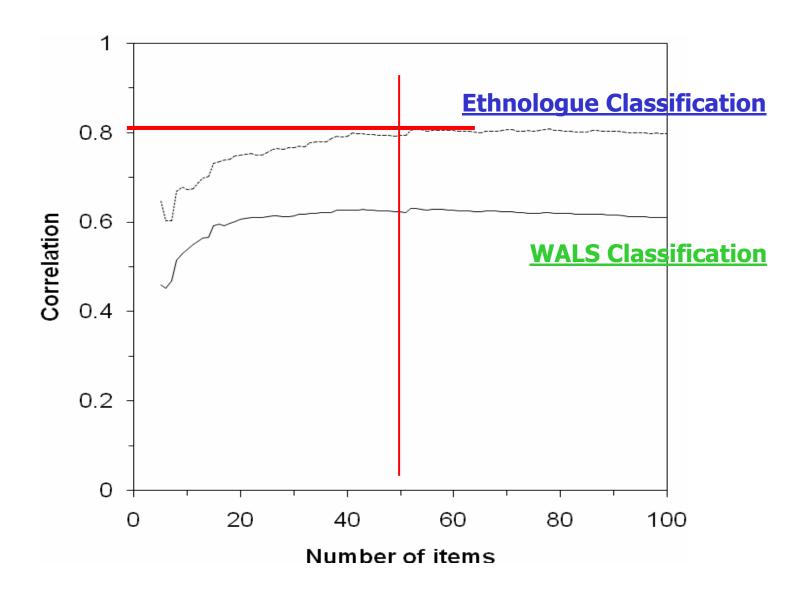
- at least the same results as > 40
- better results than < 40











I	dog	nose	die	smoke
you	louse	mouth	kill	fire
we	tree	tooth	swim	ash
this	seed	tongue	fly	burn
that	leaf	claw	walk	path
who	root	foot	come	mountain
what	bark	knee	lie	red
not	skin	hand	sit	green
all	flesh	belly	stand	yellow
many	blood	neck	give	white
one	bone	breast	say	black
two	grease	heart	sun	night
big	egg	liver	moon	hot
long	horn	drink	star	cold
small	tail	eat	water	full
woman	feather	bite	rain	new
man	hair	see	stone	good
person	head	hear	sand	round
fish	ear	know	earth	dry
bird	eye	sleep	cloud	name

1	dog	nose	die	smoke
you	louse	mouth	kill	fire
we	tree	tooth	swim	ash
this	seed	tongue	fly	burn
that	leaf	claw	walk	path
who	root	foot	come	mountain
what	bark	knee	lie	red
not	skin	hand	sit	green
all	flesh	belly	stand	yellow
many	blood	neck	give	white
one	bone	breast	say	black
two	grease	heart	sun	night
big	egg	liver	moon	hot
long	horn	drink	star	cold
small	tail	eat	water	full
woman	feather	bite	rain	new
man	hair	see	stone	good
person	head	hear	sand	round
fish	ear	know	earth	dry
bird	eye	sleep	cloud	name

40 Most Stable

Early analyses have shown:

- Most stable 40/100 item subset gives optimal results
- → Less work

Early analyses have shown:

- Most stable 40/100 item subset gives optimal results
- → Less work
- → Less missing data

Early analyses have shown:

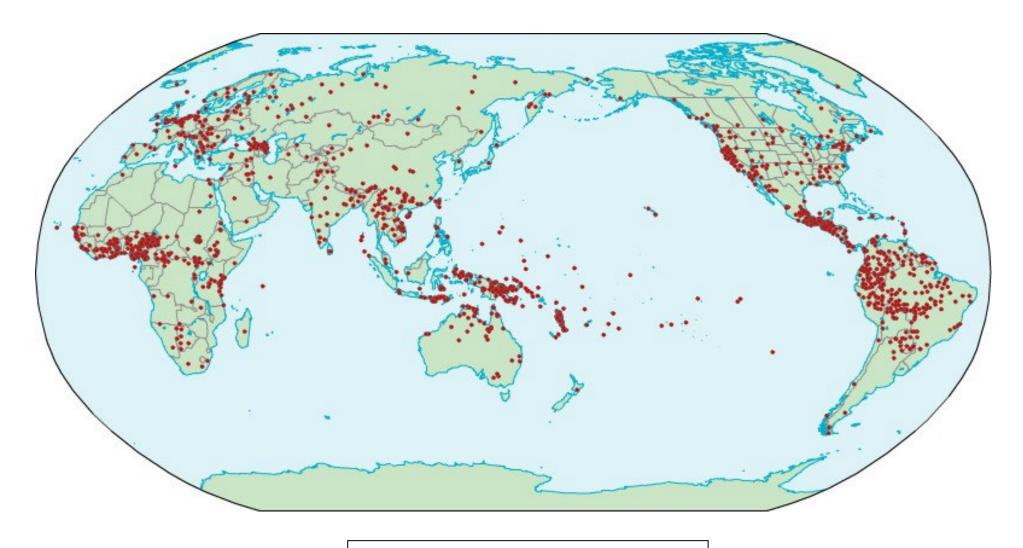
- Most stable 40/100 item subset gives optimal results
- → Less work
- → Less missing data
- → Faster processing; combinatorial explosion:

 $40:100 \sim 2.5*2.5 = 6.3$

4

Current sample

3500 languages * 40 lexical items



Languages currently sampled

4

Processing problems ...

3500 languages * 40 lexical items:

~ 10.000.000.000 comparisons

4

Processing problems ...

3500 languages * 40 lexical items:

~ 10.000.000.000 comparisons (10G)

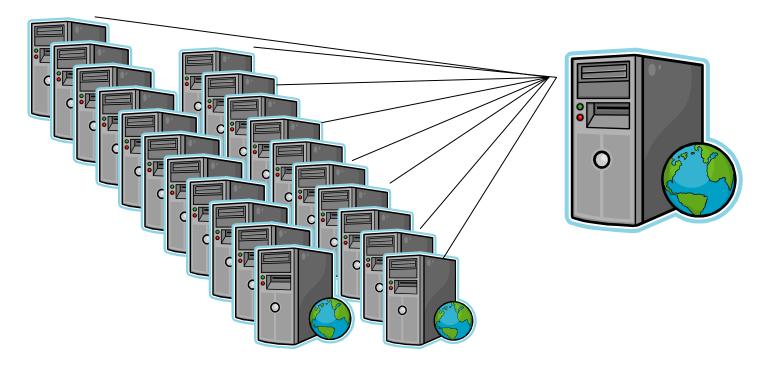
comparison at the phoneme level

for feature level: ~ 250.000.000.000 (0.25T)

Processing problems ...



Solution: parallel processing



100 times faster

4

Lexical items: transcription

First phase of project (2007):

Problems with full phonological (IPA) representation of words:

4

Lexical items: transcription

First phase of project (2007):

Problems with full IPA representation of words:

- data entry via keyboard

First phase of project (2007):

Problems with full IPA representation of words:

- data entry via keyboard
- simple programming languages (Fortran; Pascal)

First phase of project (2007):

Problems with full IPA representation of words:

- data entry via keyboard
- simple programming languages (Fortran; Pascal)
- → Recoding to simplified ASJPcode (keyboard)

ASJPcode:

7 Vowels

34 Consonants

All other phonemes to 'closest sound'

ASJPcode:

7 Vowels

34 Consonants

All other phonemes to 'closest sound'

Symbols for:

Nasalization
Labialization
Palatalization
Aspiration
Glottalization

Abaza (Caucasian):

Meaning

PERSON

LEAF

SKIN

HORN

NOSE

TOOTH

Abaza (Caucasian):

Meaning IPA

LEAF byj+

SKIN tfwazi

HORN tf'"+\subsets"a

NOSE pints'a

TOOTH pits

Abaza (Caucasian):

ASJPcode Meaning IPA $\int_{0}^{w} it \int_{0}^{v} iv \int_{0}^{w} iv \int_{$ **PERSON** bχ^j÷ **LEAF** → bxy3 **SKIN** tfwaz^j **Cwazy** tʃ'^wiswa → Cw"3Xwa **HORN NOSE** pints'a → p3nc"a TOOTH pits p3c

Loss of information?

Experiment with Caucasian (39 lgs):

Loss of information?

Experiment with Caucasian (39 lgs):

- Full IPA does not score better for separating language families

Loss of information?

Experiment with Caucasian (39 lgs):

- Full IPA does not score better for separating language families
- For *precise genetic classification* IPA is even less accurate than ASJP code (too specific?)

Most important measure: Levenshtein Distance

Levenshtein Distance (LD)

a. between 2 words:

Levenshtein Distance (LD)

a. between 2 words:

number of transformations (=changes & additions) to get from the shorter form to the longer one

Levenshtein Distance (LD)

a. between 2 words:

number of transformations (=changes & additions) to get from the shorter form to the longer one

b. between 2 languages:

mean LD for all common pairs

Two problems with simple LD:

Two problems:

1. Value depends on length of longest word

4

Comparing words

1. Value depends on length of longest word

CAT

DOG

$$x \times x = 3$$

4

Comparing words

1. Value depends on length of longest word

CAT

ELEPHANT

DOG

DOG

$$x \times x = 3$$

$$x \times x \times x \times x \times x = 8$$

1. Value depends on length of longest word

```
\rightarrow Normalize: LDN = (LD / L<sub>max</sub>)
```

1. Value depends on length of longest word

CAT
DOG
$$x \times x = 3/3 = 1.0$$

ELEPHANT

DOG

$$x \times x \times x \times x \times x = 8 / 8 = 1.0$$

4

Comparing words

Two problems:

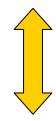
- 1. Value depends on length of longest word
- \rightarrow Normalize: LDN = (LD / L_{max})
- 2. Differences between lgs in phonological overlap

2. Differences between Igs in phonological overlap

DUTCH ~ ENGLISH: mean LDN: 0.55

2. Differences between Igs in phonological overlap

DUTCH ~ ENGLISH: mean LDN: 0.55



DUTCH ~ MANDARIN: mean LDN: 0.91

2. Differences between lgs in phonological overlap

DUT ~ ENG: mean LDN: 0.55

mean LDN other words: 0.89

DUT \sim **MAN**: mean LDN: 0.91

mean LDN *other* words: 0.93

2. Differences between Igs in phonological overlap

DUT ~ ENG: mean LDN: 0.55 / 0.89

mean LDN other words: 0.89

DUT ~ MAN: mean LDN: 0.91 / 0.93

mean LDN other words: 0.93

2. Differences between Igs in phonological overlap

DUT ~ ENG: mean LDN: $0.55 / 0.89 \neq 0.62$

DUT ~ MAN: mean LDN: $0.91 / 0.93 \neq 0.99$

4

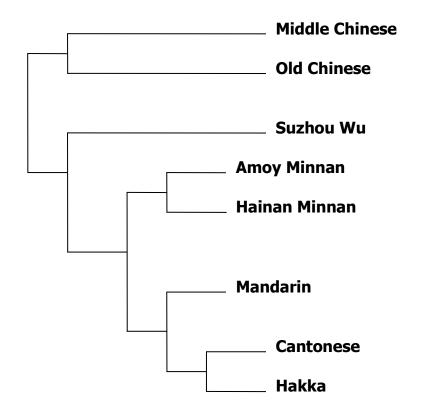
Comparing words

Two problems:

- 1. Value depends on length of longest word
- \rightarrow Normalize: LDN = (LD / L_{max})
- 2. Differences between lgs in phonological overlap
- → Eliminate 'background noise':

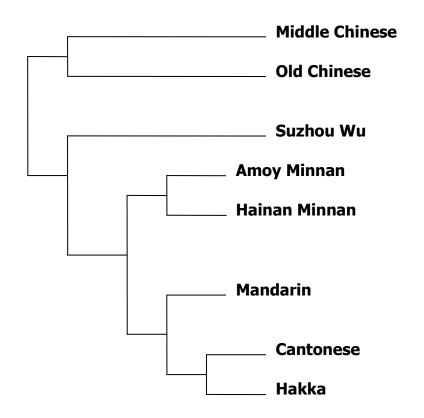
LDND = (LDN / LDN_{different pairs})

Sino-Tibetan: Chinese



ASJP tree based on lexical relations

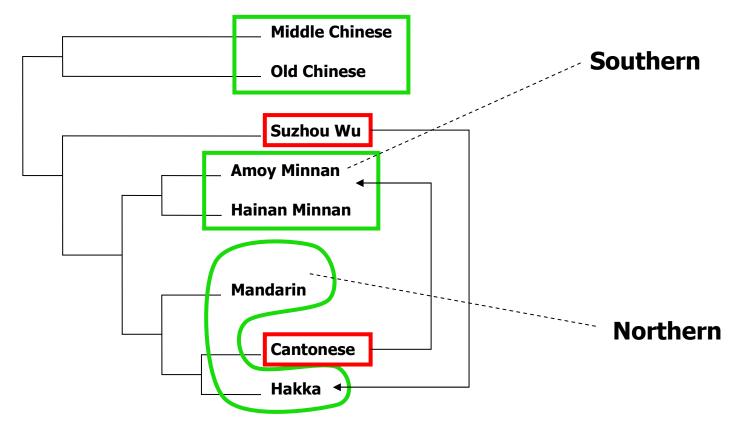
Sino-Tibetan: Chinese



ALL & ONLY

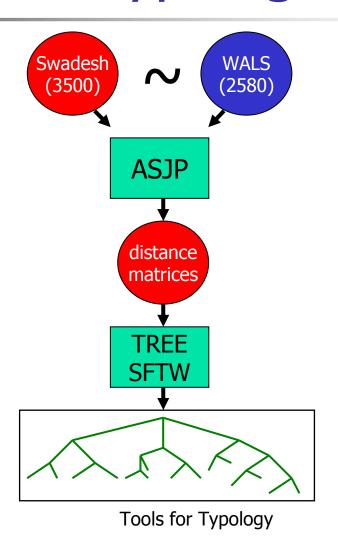
ASJP tree based on lexical relations

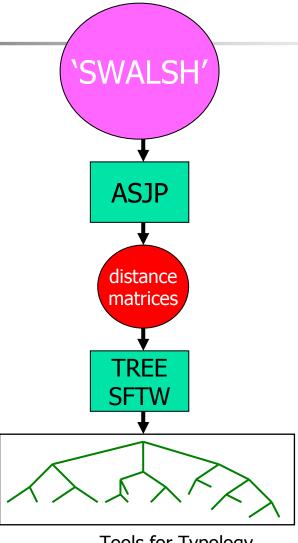
Sino-Tibetan: Chinese



Genetic classification in Thurgood & LaPolla (eds)

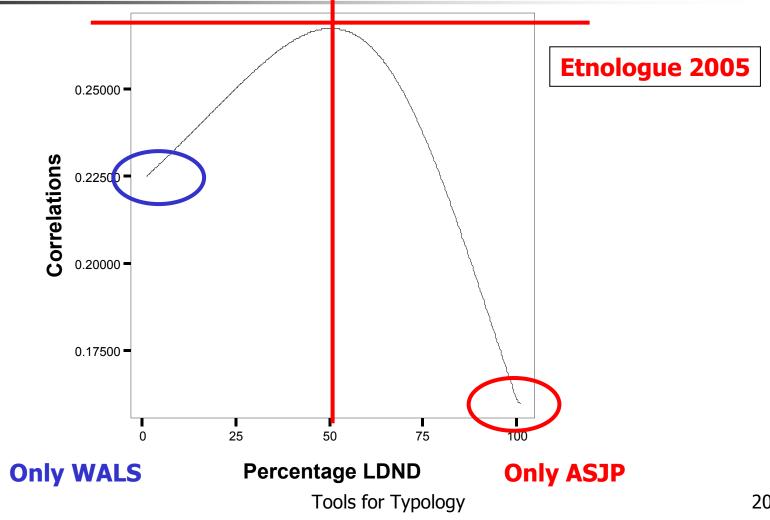
Lexical plus typological data



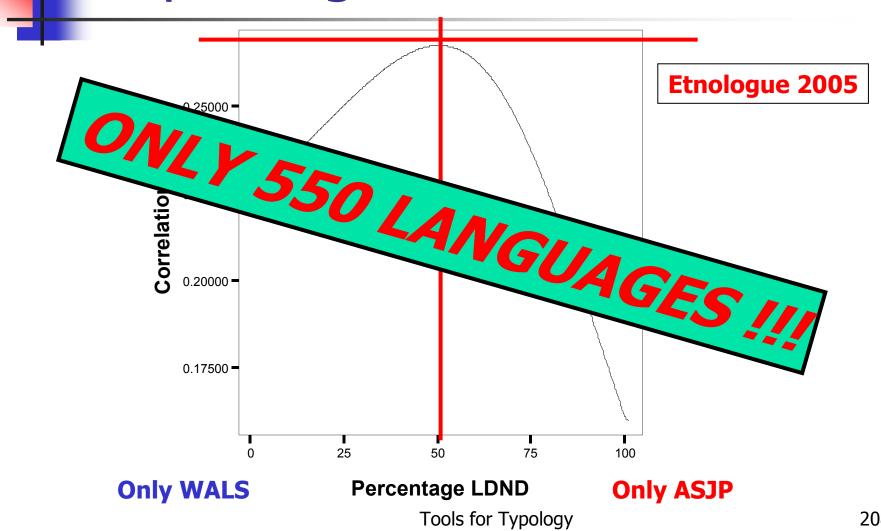


Tools for Typology

Improving the fit



Improving the fit



Second phase of project (2009-10):

Replace ASJP code by full IPA representations

Second phase of project (2009-10):

Problems with full IPA representation solved:

Second phase of project (2009-10):

Problems with full IPA representation solved:

1. scan/download/... full IPA representations

Second phase of project (2009-10):

Problems with full IPA representation solved:

- 1. scan/download/... full IPA representations
- 2. automatic conversion IPA to integer (Python)

Second phase of project (2009-10):

Problems with full IPA representation solved:

- 1. scan/download/... full IPA representations
- 2. automatic conversion IPA to integer (Python)
- 3. (semi-)automatic recoding to ASJPcode: transduction on the basis of a formal grammar

Abaza (Caucasian):

Meaning: PERSON

Abaza (Caucasian):

Meaning: PERSON

IPA: \(\sigma^w\daggert \text{tf}'^{jw} \sigma^w\daggert s

Abaza (Caucasian):

Meaning: PERSON

IPA: \(\sigma^w\daggert \text{tf}'^{jw}\sigma^w\daggert s

Decimal: 661,695,616,679,700,690,695,661,695,616,115

Lexical items: transcription

Abaza (Caucasian):

Meaning: PERSON

IPA: \(\sigma^w\daggert \text{tf}'^{jw} \sigma^w\daggert s

Decimal: 661,695,616,679,700,690,695,661,695,616,115

`a' <- 661, 895, 416, ...

formal grammar

Lexical items: transcription

Abaza (Caucasian):

Meaning: PERSON

IPA: \(\sigma^w\daggeright\)i\(\sigma^v\daggeright\)s

Decimal: 661,695,616,679,700,690,695,661,695,616,115

'a' <- 661, 895, 416, ...

formal grammar

ASJP++code

Lexical items: transcription

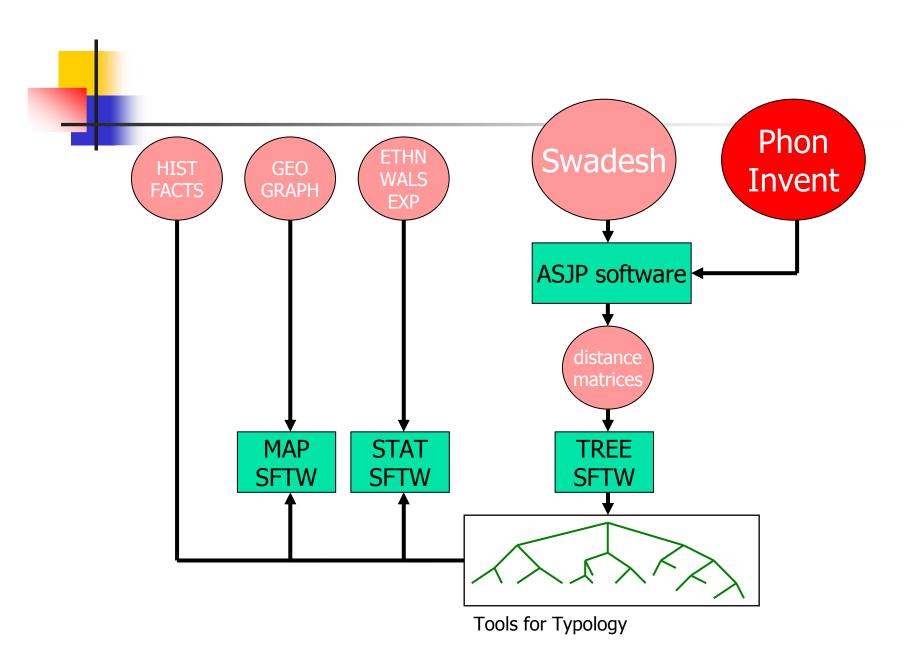
IPA: \(\sigma^w\daggert \text{tf}'^{jw} \sigma^w\daggert s

Decimal: 661,695,616,679,700,690,695,661,695,616,115


```
`a' <- 661, 895, 416, ...
...
`a' [+Vow, +Low, +Middle]
`b' [+Cons, +Labial, +Plosive, +Voice]
```

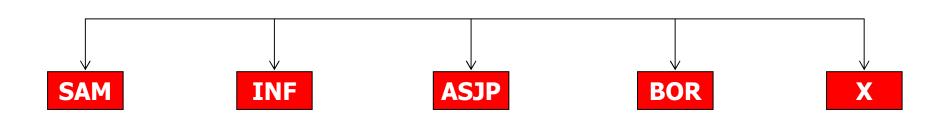
formal grammar + phonological features

ASJP++code: (comparison of phonological features)

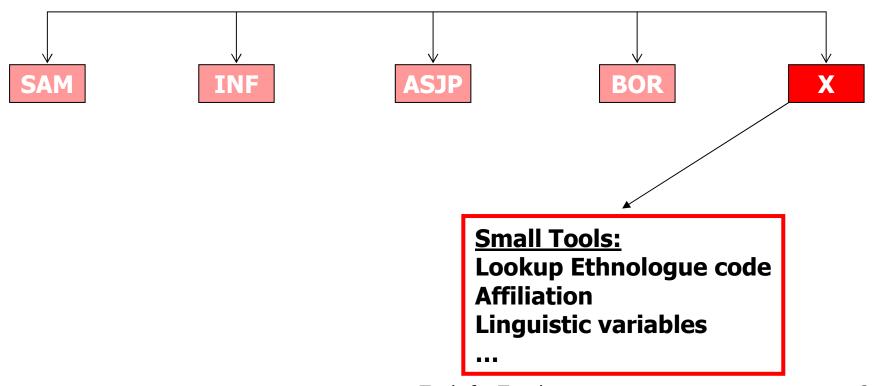


5. Accessibility

Accessibility



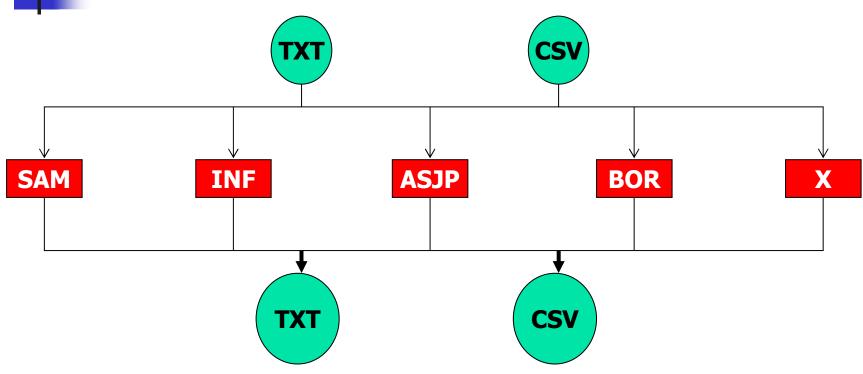
Accessibility



Access: data, internal TXT CSV SAM INF ASJP BOR X

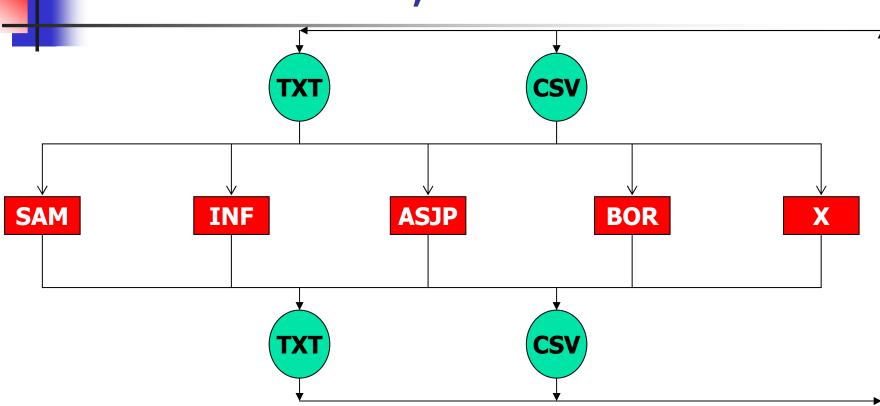
Generally accepted data structures (Unicode; UTF8)

Access: data, internal



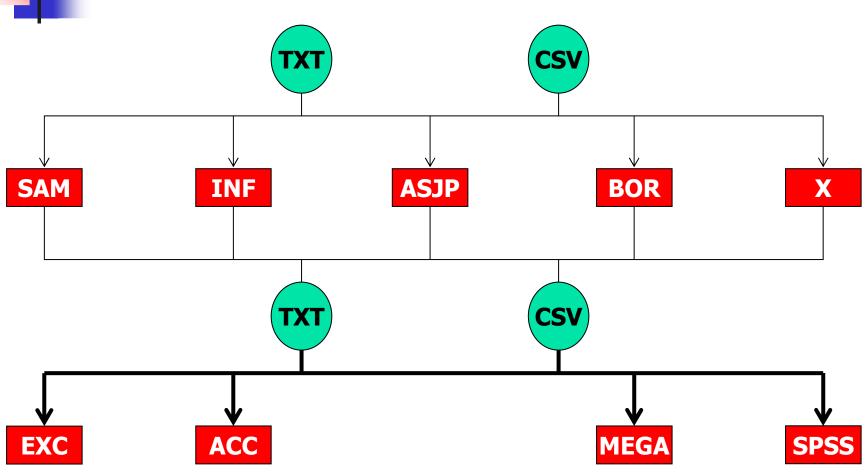
Generally accepted data structures (Unicode; UTF8)

Access: data, internal

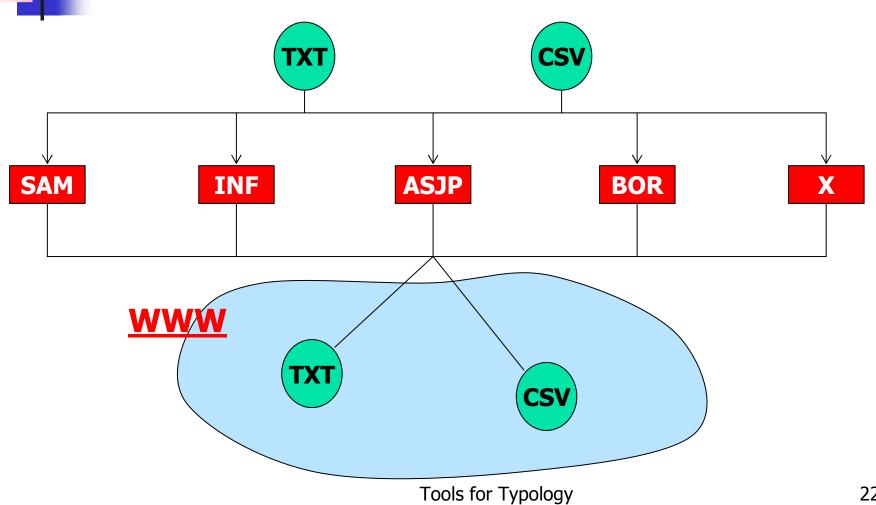


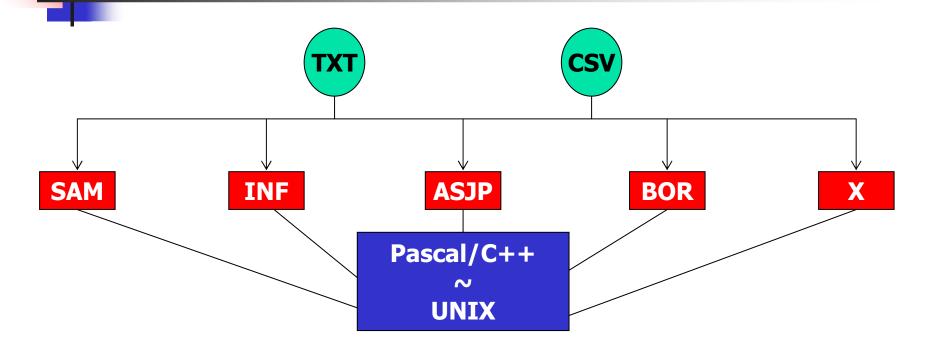
4

Access: data, external

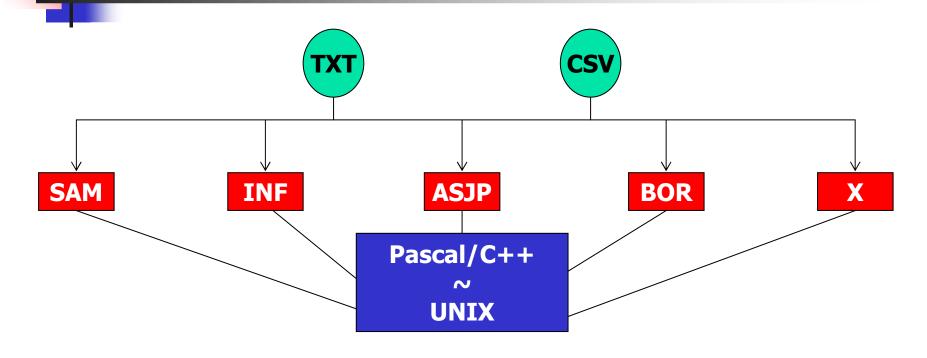


Access: data, universal?

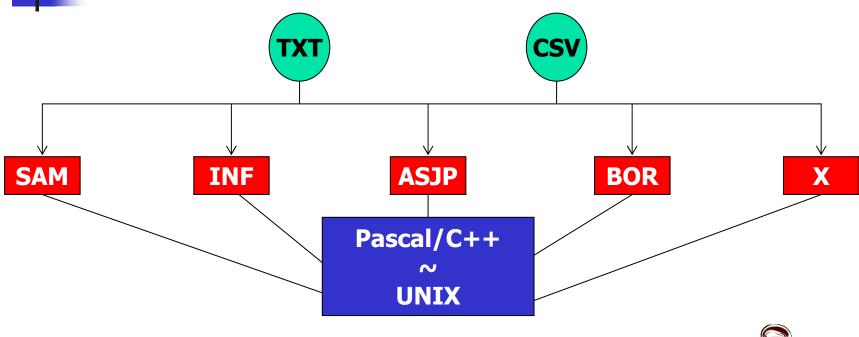




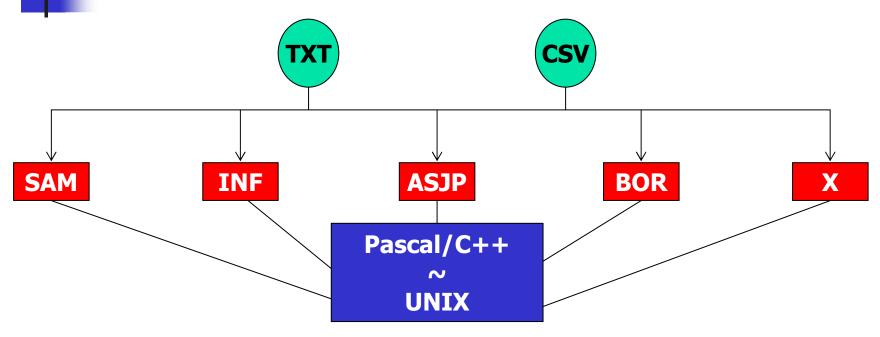
1. Too big / slow for Windows (?)



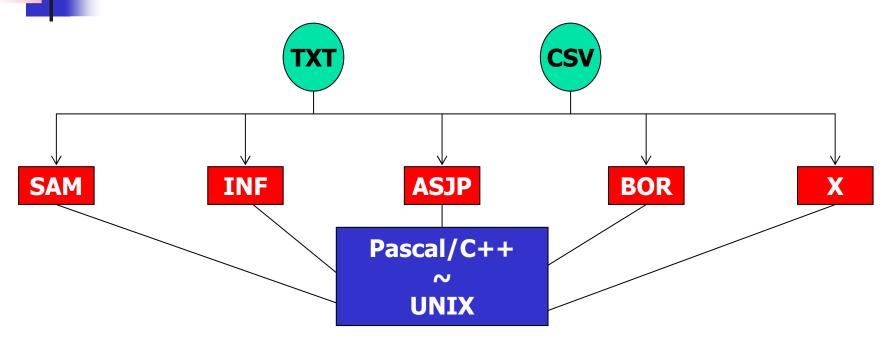
- 1. Too big / slow for Windows (?)
- 2. No user interface



- 1. Too big / slow for Windows (?)
- 2. No user interface



- 1. Too big / slow for Windows (?)
- 2. No user interface



- 1. Too big / slow for Windows (?)
- 2. No user interface

There must be more of such out there, some *useful* for the linguistic community, but:

a. platform

- accessible from WWW
- programming language

a. platform

- accessible from WWW
- programming language

b. 'human' interface

- interactive interface < > actual application
- user documentation

a. platform

- accessible from WWW
- programming language

b. 'human' interface

- interactive interface < > actual application
- user documentation

c. data structure

- TXT, CSV → HTML, Java Script, ... (?)

a. platform

- accessible from WWW
- programming language

b. 'human' interface

- interactive interface < > actual application
- user documentation

c. data structure

- TXT, CSV → HTML, Java Script, ... (?)

d. maintenance

- programmer documentation

