Building a Large Multilingual Resource using (Semi-)Automated Methods: Finding, Enriching, Repurposing

> William Lewis Microsoft Research & Fei Xia University of Washington

Main Ideas

- Finding Linguistic Data on the Web
- Extracting and Databasing the Data
- Enriching the Data (e.g., through projections)
- Providing Query Facility over the Data
- Training Tools over the Enriched Data

Linguistic Data on the Web

- Large amount of linguistically analyzed language data making its way to the Web
- Not easy to locate, especially if language data embedded in other resources & documents
 - Search engines may locate resources
 - But results noisy and sometimes difficult to ferret through
 - Made more difficult because of the lack of consistency in encoding and presenting data

Linguistic Data on the Web

• Problems:

- How to make the wealth of language data on the Web easily locatable
- How to provide a search facility across data and repurpose the data (*interoperate*)

• Solutions:

- Adapt existing technologies to locate resources (Web pages, documents, etc.)
- Extract, enrich and index data (by language, family, construction, resource)
- Expose the data to services (search, tool building, etc.)

Outline

- Find, Harvest, and Database IGT
- Language ID
- IGT enrichment Projections, and their Utility
 - Potential for Query
- Evaluation of the Methodology
 - Against independently developed resources
- Conclusion and future work

Finding, Harvesting and Databasing IGT

Interlinear Glossed Text

 Interlinear Glossed Text (IGT) - enriched language data used for illustrative purposes as part of a larger analysis

ya-asàaIndoosuuyàrgujiyaaTranscription Line3ms-PERFputIndofry-DN-ofpeanutsGloss Line'He made Indo fry the peanuts.'✓Translation Line

Abdoulaye (1992)

linguistics.buffalo.edu/people/students/dissertations/abdoulaye/hausadiss.pdf

Locating and Extracting IGT

There are many constructions in which the pivot is the central constituent. In chapter 2, arguments are provided showing that the core pivot argument in Hausa is the PVP, not the clause initial NP. This analysis is assumed here. There are many complement-taking verbs which are restricted to pivot control. Verbs such as <u>Ki</u> 'refuse', <u>toBs</u> 'try once', <u>fasta</u> 'begin', <u>Kasta</u> 'finish', exclusively have pivot control of the understod actor, as illustrated below:

(38)	a.	yaa 3ms.PERF He began tan	faara begin-I ning the lea	jiimär tan-DN-of ther.'	faataa. leather	
	b.	*yaa 3ms.PERF *He began ta			jõemi an-II	faatäa. leather

As one can see, only the pivot of the main verb <u>faars</u> 'begin' can controle the actor of the subordinate clause. Other verbs allow both pivot and non-pivot control, while some other verbs exclude disallow pivot control. These cases are illustrated below:

(39)		yazi soo 3ms.PERF war He wanted to go t	nt 3ms.SUB	B go	Maraa Marad to go i	i	
(40)	a.	yaa saa 3ms.PERF put He put himself in	Kānshi himtelf to frying the pe	sunyår fry-DN-of anuts.'	guj pes	iiyaa. anuts	
	b.	yaa saa Sms.PERF put He made Indo fry		tuuyêr fry-DN-of	gujiya peanu		
(41)	a.	yaa ba 3ms.PERF let 'He let Indoo slee	-II Indoo	tă 3fs.SUB	yi do	kwaanaa. sleep	

44

- Find Documents (Crawl)
- Harvest Instances
- Database Instances

Language: Hausa URL: http://www.ling...

ya-a sàa Indoo suuyàr gujiyaa 3ms-PERF put Indo fry-DN-of peanuts 'He made Indo fry the peanuts.'

Crawling the Web

- Intuition: IGT is normally contained in linguistic documents
- Find IGT by throwing queries against existing search engines
- Query terms
 - Grams: -NOM (nominative) , -ACC (accusative)
 - Language names and language codes: Icelandic, Malagasy
 - Drawn from the Ethnologue database (Gordon, 2005)
 - Linguists' names and the languages that they work on:
 - Drawn from the Linguist List's linguist database (linguistlist.org)
- Try different combinations of terms from these categories:
 Ex: NOM+ACC+Icelandic

Results based on the top 100 queries for each type

Query Type	Avg #	Avg # docs
	docs	w/ IGT
Gram(s)	1184	239
Language name(s)	1314	259
Both grams	1536	289
and names		
Language words	1159	193

→ "Both grams and names" work best.

IGT detection

- Difficulty in IGT detection
 - Not all IGT are structured the same:
 - Some miss levels of annotation
 - Others add them
 - Some mix annotation within "lines"
 - Long IGT examples are often wrapped multiple times.
 - IGT often embedded in PDFs
 - Pdf-to-text conversion often introduces noise (data loss, corruptions)
 - Encoding not necessarily preserved in extraction leads to additional data loss

An example

[DP [D0 Ku] [AGRP [Adj ketaran] AGR0 [NP namwu]]]

а.

the (Kim, 1997) big

tree

Collapses data & gloss
Atypical, "extra" annotations and structure
Pdf-to-txt conversion noise

Applying Machine Learning methods to IGT detection

- Treat it as a sequence labeling problem.
- Label each line in a document with one of the five tags: (an extension of the BIO scheme)
 - BL: a blank line
 - B: the 1st line in an IGT
 - I: inside an IGT that is not a BL
 - E: the last line in an IGT
 - O: outside IGT that is not a BL
- Convert a tag sequence into IGT sequences by simple heuristics:
 - Ex: Any "B [I | BL]* E" sequence is treated as an IGT instance.

Features

- F1: the words that appear on the current line.
- F2: 16 features that look at various cues:
 Ex: whether the line contains an example number
- F3: the tags of previous two words
- F4: the same as F2 features, but checked against the neighboring lines
 - Ex: whether the next line contains an example number.

Data sets

	# files	# lines	# IGTs
Training data	41	39127	1573
Dev data	10	8932	447
Test data	10	14592	843

Evaluation measures:

- Exact match
- Partial match

Performance on the test data

Features	Exact match			Partial match		
	prec	recall	fscore	prec	recall	fscore
Regex templates	74.95	52.19	61.54	98.64	68.68	80.98
F_2	57.02	48.64	52.50	94.02	80.19	86.56
$F_2 + F_4$	75.50	76.04	75.77	93.76	94.42	94.09
$F_2 + F_3 + F_4$	77.14	76.04	76.58	95.19	93.83	94.50
$F_1 + F_2 + F_3 + F_4$	82.29	81.02	81.65	96.51	95.02	95.76

See Xia & Lewis, IJCNLP 2008

Databasing IGT

- Currently, we parse IGT into a consistent form, stored line-by-line
- We also parse and align glosses with language data
- We POS-tag and parse the English, and provide some search facility over enrichments
- Intuition: IGT are bitexts+
 - We can enrich them further
- And we do language ID and store ISO lang code

Language ID

Language ID

- Language ID essential
 - For query, linguists will insist on it
 - For tool building, incorrect ID can introduce noise
- But...

- Language ID in IGT is not easy

Previous work on language ID

(not exhaustive)

- (Cavnar and Trenkle, 1994)
- (Damashek, 1995)
- (Elworthy, 1998)
- (Aslam and Frost, 2003)
- (McNamee and Mayfield, 2004)
- (Kruengkrai et al., 2005)

• • • • •

A good summary in (Hughes et. al., 2006)

They all require a reasonable amount of training data for each language.

Differences from a typical language ID task

• Large number of languages: 600+

- Unseen languages: 10% of IGTs in test data belong to unseen languages
- Very limited amount of training data: no more than 10 words per language for 45.3% of languages

→ Cavnar and Trenkle's algorithm: 99.8% (8 langs)
 → For us (600+ languages) => C&T returns 51.4%

Use of language code

A language can have multiple names:

- Ex: "aaa" => Alumu, Tesu, Arum, Alumu-Tesu, Alumu, Arum-Cesu, Arum-Chessu, and Arum-Tesu
- A language name can refer to multiple languages:
 – Ex: Edo => "bin" or "lew"
- We use language codes, because each language code maps to exactly one language
- Our system outputs both language codes and language names

Language ID

1	
1:	THE ADJECTIVE/VERB DISTINCTION: EDO EVIDENCE
2:	Unaccusativity and the Adjective/Verb Distinction: Edo Evidence
3:	Mark C. Baker and Osamuyimen Thompson Stewart
4:	McGill University
27:	The following shows a similar minimal pair from Edo , a Kwa
28:	language spoken in Nigeria (Agheyisi 1990; Omoruyi 1986).
29:	
30:	(2) a. Èmèrí mòsé.
31:	Mary be.beautiful(V)
32:	'Mary is beautiful.'
33:	
34:	b. $Emerii *(ye) mose$.
35:	Mary be.beautiful(A)
36:	'Mary is beautiful (A).'

Language ID (cont)

- Standard language ID algorithms do not work
 - Large number of languages
 - Little training data

- Our work:
 - Treating language ID as a co-reference task
 - Mary called Chris. She was running late.
 - Applying NLP techniques (e.g., MaxEnt, Markov logic, etc.)
 - Results (in accuracy): 85.10%

ODIN database

Range of	# of	# of IGT	% of IGT
IGT instances	languages	instances	instances
> 10000	3	$36,\!691$	19.39
1000-9999	37	$97,\!158$	51.34
100-999	122	$40,\!260$	21.27
10-99	326	$12,\!822$	6.78
1-9	838	$2,\!313$	1.22
total	1326	189,244	100

Feature templates

- (F1) The nearest language that precedes the IGT
- (F2) The languages appearing in the neighborhood of the IGT
- (F3) Comparing ngrams in the current IGT and ngrams for a language

=> This is info used in a traditional language ID algorithm

• (F4) Comparing ngrams in the current IGT and ngrams in other IGTs in the same document

With less training data

% of training	F1	F1-F2	F1-F3	F1-F4	Upper bound of
data used					the CL approach
0.1%	54.37	54.84	65.28	70.15	1.66
0.5%	54.37	62.78	76.74	80.24	21.15
1.0%	54.37	60.58	76.09	81.20	28.92
10%	54.37	62.13	77.07	83.08	54.45

See Xia, Lewis, & Poon, EACL 2009

Where we are

- Online
 - ODIN has 41,545 instance collected from 2,946 documents
 - All collected from the original regex approach
 - 45% hand reviewed
- Soon to come online
 - 189,000+ instances identified using the new ML techniques from the same documents
 - Most have been hand reviewed
- In the near future
 - 100,000+ documents have been identified that *might* contain IGT (crawling continues unabated)
 - All of these documents will be run through the new tools and added
 - Anticipate 500K-1M+ new instances of IGT
- Unifying markup
 - Limited, mostly manual, work thus far
 - Targeted for future ML work
- Correcting instances (fixing noise)
 - Another application of ML technology (heuristics only get us so far)

Enriching IGT

Main Ideas

- Project annotations and structures onto target language data
 - Structures include
 - Annotations
 - Dependency structures
 - Phrase structures

 Process could be used to normalize annotations used in the database (to facilitate search)

Projection

Enriched English data

The teacher gave a book to the boy DT NN VBD DT NN IN DT NN

Welsh language data

Rhoddodd yr athro lyfr i'r bachgenVBDDT NNNN IN-DTNN

Structural projection work

Previous work

- (Yarowsky & Ngai, 2001): POS tags and NP boundaries
- (Xi & Hwa, 2005): POS tags
- (Hwa et al., 2002): dependency structures
- (Quirk et al., 2005): dependency structures

• Current projection work:

- Projecting both dependency structures (Lewis et al 2006)
- ...and phrase structures (Xia and Lewis 2007)
- Does not require a large amount of parallel data or hand-aligned data for accurate projections
- Can be applied to hundreds of languages, drawing from ODIN (Lewis 2006)

Some Notes Notations and Terminology

- Part of Speech labels use Penn Treebank (PTB) tags
 E.g., DT=determiner, NN=noun, VB=verb, etc.
- Trees use PTB phrasal labels (~GB) & non-binary branching
 s

 "Projections" ≠ "syntactic projections" (as in the EPP, Chomsky 1981)

The Methodology

- For the IGT for any language:
 - 1. Parse the English translation to produce a syntactic tree
 - 2. Align the target language data and the translation, notably through the gloss line
 - 3. Project annotations and the syntactic tree onto the target language data
 - 4. Reorder tree according to linear order of the constituents in the target sentence

Sample IGT Instance

Rhoddodd yr athro lyfr i'r bachgen ddoe Gave-**3sg** the teacher book to-the boy yesterday "The teacher gave a book to the boy yesterday"

(Bailyn, 2001)

Step 1 - Parse

Parse the English translation (e.g. using Charniak's parser, Charniak 97, or Collin's parser, Collins 98):
 "The teacher gave a book to the boy yesterday."

• Align the translation with the target:

Step 3 – Project Structure

- Copy the English tree and remove all the unaligned English words
- Replace English words with corresponding target words
- Remove duplicates (if any) and attach unaligned target words
- Reorder tree (according to the linear order of the target)

Start with English tree

"The teacher gave a book to the boy yesterday"

Replace English words with target words

The teacher gave a book to the boy yesterday"

Remove Duplicates

Remove Duplicates

Remove Duplicates

Step 4 - Reorder

Summary of the projection algorithm

Dependency Structure Projection

• We also can build and project dependency structures:

Projection results (DS only)

• Results from Lewis et al 2006:

							YAQ	1
w/ gold Eng DS								
w/ gold alignment								
w/ both	91.21	91.67	89.82	89.65	94.25	85.77	90.68	90.64

(Measured against gold standards created by human annotators.)

Utility of Projections

Construction Query

Construction Query

- Question:
 - Can we search *cross-linguistically* for constructions based on syntactic or morphosyntactic cues?
- Assumption:
 - There are universal constructions and
 - There are syntactic or morphosyntactic reflexes of these constructions.

Construction Query

- Given annotated and parsed English data, we can
- Search for constructions like:
 - Passives
 - Relative clauses
 - Raising constructions
 - Sluices
 - Focus (English "It's the xx that")
- The aligned language data in IGT might contain similar constructions

ODIN Construction Query

ODIN The Online Database of Interlinear Text

Advanced Search BETA 0.1 (About) (Errata) xpresses As Conditional Grammatical N Coordination bressed As Counterfactual Grammatical N Imperative bressed As Grammatical N Multiple Quantifier bressed As Multiple Wh Grammatical N Negation bressed As Passive Possessive Question. Raising **Reflexive Anaphor Relative Clause** Sentential Negation Wh and Quantifier

Langs w/ passive examples (maybe)

Your query:

· Construction query: Passive

Language	Code	Profile	Resources	Data
Aceh	ATJ	Profile (XML)	Resources	Data
Bima	BHP	Profile (XML)	Resources	Data
Breton	BRT	Profile (XML)	Resources	Data
Bali	BZC	Profile (XML)	Resources	<u>Data</u>
Chinese, Mandarin	CHIN	Profile (XML)	Resources	Data
Chamorro	CJD	Profile (XML)	Resources	<u>Data</u>
Dutch	DUT	Profile (XIML)	Resources	Data
German, Standard	GER	Profile (XIML)	Resources	Data
Hindi	HND	Profile (XIML)	Resources	Data
Hungarian	HNG	Profile (XIML)	Resources	Data
Hausa	HUA	Profile (XIML)	Resources	Data
Icelandic	ICE	Profile (XIML)	Resources	Data
Indonesian	INZ	Profile (XIML)	Resources	<u>Data</u>
Italian	ITN	Profile (XIML)	Resources	<u>Data</u>
Javanese	JAN	Profile (XIML)	Resources	<u>Data</u>
т	TDAT		Ъ	T .

Passive examples (maybe)

Your query:

- Construction query: Passive
- Language: JAN

Source doc: ARKA, I WAYAN AND JELADU KOSMAS. Passive without passive morphology? Evidence from Manggarai

Source url: [http://rspas.anu.edu.au/linguistics/iwa/Arka-Kosmas-final.pdf]

```
Example #1:
(36) a. Klambi-ne di-kumbah aku/kowe/Siti
shirt-DEF PASS-wash 1s /2s/Name (Sawardi 2001
'The shirt was washed by me/you/Siti'
```

ODIN Construction Query

ODIN The Online Database of Interlinear Text

Advanced Search BETA 0.1 (About) (Errata) xpresses As Conditional Grammatical N Coordination bressed As Counterfactual Grammatical N Imperative bressed As Grammatical N Multiple Quantifier bressed As Multiple Wh Grammatical N Negation bressed As Passive Possessive Question. Raising **Reflexive Anaphor Relative Clause** Sentential Negation Wh and Quantifier

Langs w/ relative clauses (maybe)

ODIN

The Online Database of Interlinear Text

Your query:

• Construction query: Relative Clause

Language	Code	Profile	Resources	Data
Afrikaans	AFK	Profile (XML)	Resources	<u>Data</u>
Ambai	AMK	Profile (XML)	Resources	<u>Data</u>
Akawaio	ARB	Profile (XML)	Resources	<u>Data</u>
Armenian	ARM	Profile (XML)	Resources	<u>Data</u>
Mai Brat	AYZ	Profile (XML)	Resources	<u>Data</u>
Bavarian	BAR	Profile (XML)	Resources	<u>Data</u>
Bats	BBL	Profile (XML)	Resources	<u>Data</u>
Bella Coola	BEL	Profile (XML)	Resources	<u>Data</u>
Jur Modo	BEX	Profile (XML)	Resources	<u>Data</u>
Tukangbesi South	BHQ	Profile (XML)	Resources	<u>Data</u>
Bulgarian	BLG	Profile (XML)	Resources	<u>Data</u>
Bagirmi	BMI	Profile (XML)	Resources	<u>Data</u>
Bengali	BNG	Profile (XML)	Resources	<u>Data</u>
Breton	BRT	Profile (XML)	Resources	<u>Data</u>
Bauchi	BSF	Profile (XML)	Resources	<u>Data</u>
Basque	BSQ	Profile (XML)	Resources	<u>Data</u>

Relative Clause?

Your query:

- Construction query: Relative Clause
- Language: BRT

Source doc: Phillips, Colin. (1996). Disagreement between Adults and Children. Source url: [http://www.ling.udel.edu/colin/research/papers/Disagreement.pdf]

```
Example #1:
```

 Ar vugale a lenne (*lennent) al levrioù a zo amañ the children PCL read (*read-3pl) the books PCL is here `The children who read the books are here.'

Other queries

- Search English structures and annotations, and their alignments within target language data
 - E.g., Search for relative clauses
 - Does the language use relative pronouns, etc.? (cf Comrie 2006)
- Search enriched target language data directly
 - Constituency
 - Values for typological parameters (specifically structural)
 - Constructions

Concerns

- A database of IGT a great resource, but...
- Issues of reliability with its use for structural projections:
 - IGT bias
 - Tend to be short
 - "Skewed" examples (e.g., scrambled, non-canonical forms, etc.)
 - English bias
 - The source language is English!
 - Projected structures can
 - » Contain only enough detail as found in annotated English (and glosses)
 - » Annotations, POS tags, phrasal types will all be English-centric
 - Treebank bias
 - Noise
 - PDF Extraction
 - "Faux" IGT

Concerns

- How much of a problem are the IGT and English biases, really?
- Lewis & Xia (2008): Set of experiments to test:
 - Utility of projected structures for typological queries (particularly where syntactic structures essential) – English bias
 - 2. Determine how much data we need to overcome skewed data IGT bias
- Test empirically the accuracy of the structural projections and their viability

Evaluation of the Methodology

Simple Typological Discovery

Typological Parameters

• From WALS (Haspelmath et al 2005)

WALS #	parameter	Description			
	Word Order				
330	Sentential Word Order	Order of Words in a sentence			
342	Order of Verb and Objects	Order of the Verb, Object and			
		and Oblique Object (e.g., PP) in the VP			
N/A	Definite/Indefinite	Order of Nouns and Determiners			
	Determiners, Noun	a, the			
358	Demonstrative, Noun	Order of Nouns and Demonstrative			
		Determiners (this, that)			
354	Adjective, Noun	Order of Adjectives and Nouns			
N/A	Possessive Pronoun,	Order of Possessive Pronouns			
	Noun	and Nouns			
350	Possessive NP, Noun	Order of a Possessive NPs and			
		Nouns			
346	Adposition, Noun	Order of Adpositions (e.g., Preposition,			
		Postpositions) and Nouns			

Typological Parameters From WALS (Haspelmath et al 2005)

Morpheme Order			
138	Noun, Number	Order of Nouns and Number	
		Inflections (Sing, Plur)	
210	Noun, Case	Order of Nouns and Case	
		Inflections	
282	Verb, Tense/Aspect	Order of Verbs and Tense/	
		Aspect Inflections	
Existence Tests			
154	Definite Determiner	Do definite determiners	
		exist?	
158	Indefinite Determiner	Do indefinite determiners	
		exist?	

Typological Parameters

• From WALS (Haspelmath et al 2005)

WALS #	parameter	Description			
Fo	For some typological parameter				
330	Sentential Word Order	Order of Words in a sentence			
342	Order of Verb and Objects	Order of the Verb, Object and			
		and Oblique Object (e.g., PP) in the VP			
N•∕ H¢	ow do we determine fr	om the data the values for			
the parameter?					
	Demonstrative, Noun	Order of Nouns and Demonstrative			
 E.g., for Word Order parameter, values = SVO, 					
SOV, VSO, VOS, OSV, OVS, no dominant order					
N/A	Possessive Pionoun,	Order of Lossessive Lionomis			
	Noun	and Nouns			
350	Possessive NP, Noun	Order of a Possessive NPs and			
		Nouns			
346	Adposition, Noun	Order of Adpositions (e.g., Preposition,			
		Postpositions) and Nouns			

Typological Parameters

• From WALS (Haspelmath et al 2005)

WALS #	parameter	Description			
Fo	For some typological parameter				
330	Sentential Word Order	Order of Words in a sentence			
342	Order of Verb and Objects	Order of the Verb, Object and and Oblique Object (e.g., PP) in the VP			
N/A	Definite/Indefinite Determiners, Noun	Order of Nouns and Determiners <i>a</i> , <i>the</i>			
358	Demonstrative, Noun	Order of Nouns and Demonstrative			
	 How do we determine from the data the values for the parameter? 				
Base 7 Area 7 Train	•E.g., for the DT-NN parameter, values = DT-NN,				
NN-DT, N/A		Nouns			
346	Adposition, Noun	Order of Adpositions (<i>e.g.</i> , Preposition, Postpositions) and Nouns			

Determining Value for a Typological Parameter

- Requires looking across sample of annotated data for language
- That is, a sample of the relevant Context Free Grammar (CFG) rules for the language
- Building CFGs from annotated data requires:
 - Distilling all trees for projected structures into grammar for the language
 - Collapsing identical rules and tabulating frequencies

Distill Projected Trees into CFGs

S 9 **S**' NP VBZ g g 9 mihevitra Rabe VP NP (think) 3 **VBG+IN** NP NNP 2 g g NN Rasoa mitady DT (look-for) ny zaza (the) (child)

Malagasy: Polinksy & Potsdam 2005

S -> VBZ NP SBAR S -> VP NP S' -> IN S VBZ -> mihevitra VP -> VBG+IN NP VBG+IN -> mitady NP -> DT NN NP -> NNP IN -> fa DT -> ny NN -> zaza NNP -> Rabe NNP -> Rasoa

Collapse Identical Rules, Calculate Frequencies

S -> VP NP VP -> VBD NP VBUS -> VP NP VBC S' -> IN S NP VBZ S -> VBZ NP SBAR NP VP S -> VP NP IN VB(S' -> IN S DT NP VBZ -> mihevitra NN NP VP -> VBG+IN NP NNI IN -VBG+IN -> mitady NNI DT NP -> DT NN NN NN NP -> NNP NN NNI IN -> fa NNI DT -> ny NN NN -> zaza NNP -> Rabe NNP -> Rasoa

. . .

<u>S->VP</u> (122) NP -> NN (82) NP -> DT NN (82) <u>S-></u>VPNP (76) $\underline{NP} \rightarrow \overline{NNP}$ (73) $PP \rightarrow NP$ (54) <u>S' -> S (43)</u> $VP \rightarrow NP$ (38) $VP \rightarrow VBNP$ (27) NP -> NNS (25) $WHNP \rightarrow WP$ (25) NP -> PRP (23) NP -> DT NNS (17) VP -> VBD NP (15)

. . .
Determining Value for the Determiner-Noun Parameter

• For DT-NN, need NP rules

(122)S -> VP NP -> NN (82)NP -> DT NN (82) S -> VP NP (76) $NP \rightarrow NNP$ (73) PP -> NP (54) S' -> S (43) VP -> NP (38) VP -> VB NP (27) NP -> NNS (25) WHNP -> WP (25)NP -> PRP (23) NP -> DT NNS (17) VP -> VBD NP (15)

DT-NN language

Determining Value for the Word Order Parameter

- For Word Order Parameter, need S and VP rules (or linear order in S rule)
- Problem: Identity of NPs unclear
- Idea: functionally tag English, and project

S -> VP (122)(82)NP -> NN <u>NP -> DT NN (82)</u> $S \rightarrow VPNP$ (76) $NP \rightarrow NNP$ (73) PP -> NP (54)<u>S'-></u>S (43) VP -> NP (38)VP -> VB NP (27) NP -> NNS (25)WHNP -> WP (25) NP -> PRP (23) NP -> DT NNS (17) VP -> VBD NP (15)

Vxx language?

VOS? VSO?

Additional Annotations

- NP-SUBJ, NP-OBJ mark subjects and objects
- PP-XOBJ, NP-XOBJ mark oblique objects
- NP-Poss Possessive NP
- DT1-4 Marks various kinds of determiners (definite, indefinite, deictic, all others)
- Many other annotations possible (e.g., semantic roles, construction specific tags, etc.)

Determining Value for the Word Order Parameter

 CFG with functional tags projected

(122) S -> VP S -> VP NP-SBJ (64) NP-SBJ -> NNP (54)S' -> S (43) PP-XOBJ -> NP (38) NP-SBJ -> DT NN (38)NP-OBJ -> NN (37)<u>NP</u> -> NN (36) $VP \rightarrow NP - OBJ$ (34) $VP \rightarrow VB NP - OBJ$ (25) VOS! WHNP -> WP (25) NP-OBJ -> DT NN (24)NP -> DT NN (19)

. . .

Vxx language

Experiments 1&2

- For 10 languages
 - Determine values for 14 parameters
 - Evaluate against WALS (12) or other sources (2)
- Experiment 1
 - Use no functional tags (only phrasal & POS)
- Experiment 2
 - Use functional tags (e.g., NP-SUBJ, etc.)

Results

Parameter	CFG	CFG+func
WOrder	80%	90%
VP-OBJ	50%	60%
DT-NN	80%	80%
Dem-NN	80%	90%
JJ-NN	100%	100%
PRP\$-NN	80%	80%
Poss-NN	60%	70%
P-NP	90%	90%
number	70%	70%
case	80%	80%
T/A	80%	80%
Def	100%	100%
Indef	90%	90%
Mean	80%	83%

Experiment 3

- Project Structures for 98 languages
- Determine value of WOrder parameter for each language (e.g., SVO, SOV, etc.)
 - How much data is required for accurate answers?
 - What's the relationship between the number of IGT examples and the probability of a correct answer?

Results

- Accuracy: For 69 of the 98 languages, WOrder was accurately determined
- Confusion matrix:

Guess

	SVO	SOV	VSO	VOS
SVO	32	8	0	9
SOV	2	33	0	6
VSO	2	2	3	4
VOS	0	0	0	1

Actual

Results

 Accuracy improved as # of IGT instances increased

What the Results Show

- We can fairly accurately discern values for several typological parameters
 - English bias of projections has minimal effects (on these parameters)
- Larger samples overcome the effects of – IGT Bias
- We can do this across data for many languages automatically
- Might generalize to some other parameters
- We can return data
- See Lewis & Xia 2008 (IJCNLP) for more details

Summary and Future Work

Summary

- We demonstrate
 - A tool that was built automatically from language data found on the Web
 - ML techniques (detection, lang ID) that improve both precision and recall
 - The potential for resources composed of 100s of languages and 1000s of data points for automated analysis and discovery
 - How to work within Copyright Law and linguistics custom when serving up data

Future Directions

- Using ML techniques, scale up ODIN's size
- Improve query infrastructure
 - Support richer query across language data
 - Support freer-form user queries (tgrep2)
- Building deep grammars
 - Seed Bender's Matrix project (HPSG) (Bender et al 2002)
 - Answer typological queries + provide data from ODIN
 - Create seeds for building deep grammar fragments
- Create transfer rules for MT work (Fox 2002)
- Evaluate structural divergence on scale (Xia and Lewis, under revision)
- Bootstrap tool development (Lewis 2006)

Project Specific References

Overview:

- Lewis, William and Fei Xia (2009). 'Parsing, Projecting & Prototypes: Repurposing Linguistic Data on the Web', in *Proceedings of the European Association of Computational Linguistics (EACL) Conference*, Athens, Greece, March 2009.
- Lewis, William (2006), 'ODIN: A Model for Adapting and Enriching Legacy Infrastructure', in Proceedings of the e-Humanities Workshop, held in cooperation with e-Science 2006: 2nd IEEE International Conference on e-Science and Grid Computing, Amsterdam.

Typological Discovery:

• Lewis, William and Fei Xia (2008). 'Automatically Identifying Computationally Relevant Typological Features', in *Proceedings of The Third International Joint Conference on Natural Language Processing (IJCNLP)*, Hyderabad, January 2008.

Projection:

- Xia, Fei and William Lewis (2007), 'Multilingual Structural Projection across Interlinearized Text', in *Proceedings of the North American Chapter of the Association for Computational Linguistics* (NAACL)/HLT, Boston, April 2007.
- Lewis, Xia, and Jinguji (2006). 'Enriching Language Data through Projected Structures', Proceedings of the Texas Linguistics Conferences 10 (TLSX), Austin, Texas, October.

Language ID:

 Xia, Fei, William Lewis, and Hoifung Poon (2009). 'Language ID in the Context of Harvesting Language Data off the Web', in *Proceedings of the European Association of Computational Linguistics (EACL) Conference*, Athens, Greece, March 2009.

IGT Detection:

 Xia and Lewis (2008). 'Repurposing Theoretical Linguistic Data for Tool Development and Search', in Proceedings of The Third International Joint Conference on Natural Language Processing (IJCNLP), Hyderabad, January 2008.

Infrastructure:

Farrar, Scott and William Lewis (2006). *The GOLD Community of Practice: An Infrastructure for Linguistic Data on the Web*. Journal of Language Resources and Evaluation.

ODIN: <u>http://www.csufresno.edu/odin</u> LinguistList: <u>http://odin.linguistlist.org</u>

References

- Bailyn, John F. 2001. "Inversion, Dislocation and Optionality in Russian." In Zybatow, Gerhild. Current Issues in Formal Slavic Linguistics.
- Bender, Emily M., Dan Flickinger, and Stephan Oepen. 2002. The Grammar Matrix: An Open-Source Starter-Kit for the Rapid Development of Cross-Linguistically Consistent Broad-Coverage Precision Grammars. In *Proceedings of the Workshop on Grammar Engineering and Evaluation at the 19th International Conference on Computational Linguistics*. Taipei, Taiwan.
- Charniak, Charniak. 1997. "Statistical Parsing with a Context-Free Grammar and Word Statistics." In *Proceedings of AAAI-1997*.
- Fox, Heidi. 2002. Phrasal cohesion and statistical machine translation. *Proceedings of the ACL-02 conference on Empirical methods in natural language processing.*
- Haspelmath, Martin, Mathew Dryer, David Gil, and Bernard Comrie. 2005. *World Atlas of Language Structures.* Oxford University Press.
- Hwa, Rebecca, Philip Resnik, Amy Weinberg, and Okan Kolak. 2002. "Evaluating translational correspondence using annotation projection." In *Proceedings of the 40th Annual Meeting of the ACL*, Philadelphia, Pennsylvania.
- Martínez-Fabián, Constantino. 2006. Yaqui Coordination. Unpublished dissertation. University of Arizona.
- Polinsky, Maria and Eric Potsdam. 2005. Malagasy Control and Its Theoretical Implications. Proceedings of the Berkeley Linguistic Society Annual Meeting.
- Quirk, Chris, Arul Menezes, and Colin Cherry. 2005. "Dependency tree translation: Syntactically informed phrasal SMT." In *Proceedings of ACL 2005*.
- Xi, Chenhai and Rebecca Hwa. 2005. "A backoff model for bootstrapping resources for non-English languages." In *Proceedings of HLT-EMNLP*, pages 851–858, Vancouver, British Columbia, Canada.
- Yarowksy, David and Grace Ngai. 2001. "Inducing multilingual pos taggers and NP bracketers via robust projection across aligned corpora." In *Proceedings of NAACL-2001*, pages 377–404.